Drug class | |
![]() A bottle of high potency B-complex vitamin supplement pills.
|
|
Pronunciation | /ˈvaɪtəmənis/ |
---|
A vitamin is an organic compound and a vital nutrient that an organism requires in limited amounts. An organic chemical compound (or related set of compounds) is called a vitamin when the organism cannot synthesize the compound in sufficient quantities, and it must be obtained through the diet; thus, the term "vitamin" is conditional upon the circumstances and the particular organism. For example, ascorbic acid (one form of vitamin C) is a vitamin for humans, but not for most other animal organisms. Supplementation is important for the treatment of certain health problems, but there is little evidence of nutritional benefit when used by otherwise healthy people.
By convention the term vitamin includes neither other essential nutrients, such as dietary minerals, essential fatty acids, or essential amino acids (which are needed in greater amounts than vitamins) nor the great number of other nutrients that promote health, and are required less often to maintain the health of the organism. Thirteen vitamins are universally recognized at present. Vitamins are classified by their biological and chemical activity, not their structure. Thus, each "vitamin" refers to a number of vitamer compounds that all show the biological activity associated with a particular vitamin. Such a set of chemicals is grouped under an alphabetized vitamin "generic descriptor" title, such as "vitamin A", which includes the compounds retinal, retinol, and four known carotenoids. Vitamers by definition are convertible to the active form of the vitamin in the body, and are sometimes inter-convertible to one another, as well.
Vitamins have diverse biochemical functions. Some, such as vitamin D, have hormone-like functions as regulators of mineral metabolism, or regulators of cell and tissue growth and differentiation (such as some forms of vitamin A). Others function as antioxidants (e.g., vitamin E and sometimes vitamin C). The largest number of vitamins, the B complex vitamins, function as enzyme cofactors (coenzymes) or the precursors for them; coenzymes help enzymes in their work as catalysts in metabolism. In this role, vitamins may be tightly bound to enzymes as part of prosthetic groups: For example, biotin is part of enzymes involved in making fatty acids. They may also be less tightly bound to enzyme catalysts as coenzymes, detachable molecules that function to carry chemical groups or electrons between molecules. For example, folic acid may carry methyl, formyl, and methylene groups in the cell. Although these roles in assisting enzyme-substrate reactions are vitamins' best-known function, the other vitamin functions are equally important.
Vitamin generic descriptor name |
Vitamer chemical name(s) (list not complete) | Solubility | United States Recommended dietary allowances (male, age 19–70) |
Deficiency disease | Upper Intake Level (UL/day) |
Overdose disease | Food sources |
---|---|---|---|---|---|---|---|
Vitamin A |
Retinol, retinal, and four carotenoids including beta carotene |
Fat | 900 µg | Night blindness, hyperkeratosis, and keratomalacia | 3,000 µg | Hypervitaminosis A | Liver, orange, ripe yellow fruits, leafy vegetables, carrots, pumpkin, squash, spinach, fish, soya milk, milk |
Vitamin B1 | Thiamine | Water | 1.2 mg | Beriberi, Wernicke-Korsakoff syndrome | N/D | Drowsiness or muscle relaxation with large doses. | Pork, oatmeal, brown rice, vegetables, potatoes, liver, eggs |
Vitamin B2 | Riboflavin | Water | 1.3 mg | Ariboflavinosis, glossitis, angular stomatitis | N/D | Dairy products, bananas, popcorn, green beans, asparagus | |
Vitamin B3 | Niacin, niacinamide | Water | 16.0 mg | Pellagra | 35.0 mg | Liver damage (doses > 2g/day) and other problems | Meat, fish, eggs, many vegetables, mushrooms, tree nuts |
Vitamin B5 | Pantothenic acid | Water | 5.0 mg | Paresthesia | N/D | Diarrhea; possibly nausea and heartburn. | Meat, broccoli, avocados |
Vitamin B6 | Pyridoxine, pyridoxamine, pyridoxal | Water | 1.3–1.7 mg | Anemiaperipheral neuropathy | 100 mg | Impairment of proprioception, nerve damage (doses > 100 mg/day) | Meat, vegetables, tree nuts, bananas |
Vitamin B7 | Biotin | Water | 30.0 µg | Dermatitis, enteritis | N/D | Raw egg yolk, liver, peanuts, leafy green vegetables | |
Vitamin B9 | Folic acid, folinic acid | Water | 400 µg | Megaloblastic anemia and deficiency during pregnancy is associated with birth defects, such as neural tube defects | 1,000 µg | May mask symptoms of vitamin B12 deficiency; other effects. | Leafy vegetables, pasta, bread, cereal, liver |
Vitamin B12 | Cyanocobalamin, hydroxocobalamin, methylcobalamin | Water | 2.4 µg | Megaloblastic anemia | N/D | Acne-like rash [causality is not conclusively established]. | Meat, poultry, fish, eggs, milk |
Vitamin C | Ascorbic acid | Water | 90.0 mg | Scurvy | 2,000 mg | Vitamin C megadosage | Many fruits and vegetables, liver |
Vitamin D | Cholecalciferol (D3), Ergocalciferol (D2) | Fat | 10 µg | Rickets and osteomalacia | 50 µg | Hypervitaminosis D | Fish, eggs, liver, mushrooms |
Vitamin E | , | Fat | 15.0 mg | Deficiency is very rare; sterility in males and abortions in females, mild hemolytic anemia in newborn infants | 1,000 mg | Increased congestive heart failure seen in one large randomized study. | Many fruits and vegetables, nuts and seeds |
Vitamin K | phylloquinone, menaquinones | Fat | 120 µg | Bleeding diathesis | N/D | Increases coagulation in patients taking warfarin. | Leafy green vegetables such as spinach, egg yolks, liver |
Vitamin & Minerals | Freeze | Dry | Cook | Cook+Drain | Reheat |
---|---|---|---|---|---|
Vitamin A | 5% | 50% | 25% | 35% | 10% |
Vit A- Retinol Activity Equivalent | 5% | 50% | 25% | 35% | 10% |
Vit A- Alpha Carotene | 5% | 50% | 25% | 35% | 10% |
Vit A- Beta Carotene | 5% | 50% | 25% | 35% | 10% |
Vit A- Beta Cryptoxanthin | 5% | 50% | 25% | 35% | 10% |
Vit A- Lycopene | 5% | 50% | 25% | 35% | 10% |
Vit A- Lutein+Zeaxanthin | 5% | 50% | 25% | 35% | 10% |
Vitamin C | 30% | 80% | 50% | 75% | 50% |
Thiamin | 5% | 30% | 55% | 70% | 40% |
Riboflavin | 0% | 10% | 25% | 45% | 5% |
Niacin | 0% | 10% | 40% | 55% | 5% |
Vitamin B6 | 0% | 10% | 50% | 65% | 45% |
Folate | 5% | 50% | 70% | 75% | 30% |
Food Folate | 5% | 50% | 70% | 75% | 30% |
Folic Acid | 5% | 50% | 70% | 75% | 30% |
Vitamin B12 | 0% | 0% | 45% | 50% | 45% |
Calcium | 5% | 0% | 20% | 25% | 0% |
Iron | 0% | 0% | 35% | 40% | 0% |
Magnesium | 0% | 0% | 25% | 40% | 0% |
Phosphorus | 0% | 0% | 25% | 35% | 0% |
Potassium | 10% | 0% | 30% | 70% | 0% |
Sodium | 0% | 0% | 25% | 55% | 0% |
Zinc | 0% | 0% | 25% | 25% | 0% |
Copper | 10% | 0% | 40% | 45% | 0% |
Vitamin | Soluble in Water | Exposure to Air | Exposure to Light | Exposure to Heat |
---|---|---|---|---|
Vitamin A | no | partially | partially | relatively stable |
Vitamin C | very unstable | yes | yes | yes |
Vitamin D | no | no | no | no |
Vitamin E | no | yes | yes | no |
Vitamin K | no | no | yes | no |
Thiamine (B1) | highly | no | ? | > 100 °C |
Riboflavin (B2) | slightly | no | in solution | no |
Niacin (B3) | yes | no | no | no |
Pantothenic Acid (B5) | quite stable | ? | no | yes |
Vitamin B6 | yes | ? | yes | ? |
Biotin (B7) | somewhat | ? | ? | no |
Folic Acid (B9) | yes | ? | when dry | at high temp |
Vitamin B12 | yes | ? | yes | no |
Year of discovery | Vitamin | Food source |
---|---|---|
1913 | Vitamin A (Retinol) | Cod liver oil |
1910 | Vitamin B1 (Thiamine) | Rice bran |
1920 | Vitamin C (Ascorbic acid) | Citrus, most fresh foods |
1920 | Vitamin D (Calciferol) | Cod liver oil |
1920 | Vitamin B2 (Riboflavin) | Meat, dairy products, eggs |
1922 | (Vitamin E) () |
Wheat germ oil, unrefined vegetable oils |
1926 | Vitamin B12 (Cobalamins) | Liver, eggs, animal products |
1929 | Vitamin K1 (Phylloquinone) | Leaf vegetables |
1931 | Vitamin B5 (Pantothenic acid) |
Meat, whole grains, in many foods |
1931 | Vitamin B7 (Biotin) | Meat, dairy products, eggs |
1934 | Vitamin B6 (Pyridoxine) | Meat, dairy products |
1936 | Vitamin B3 (Niacin) | Meat, grains |
1941 | Vitamin B9 (Folic acid) | Leaf vegetables |
Previous name | Chemical name | Reason for name change |
---|---|---|
Vitamin B4 | Adenine | DNA metabolite; synthesized in body |
Vitamin B8 | Adenylic acid | DNA metabolite; synthesized in body |
Vitamin F | Essential fatty acids | Needed in large quantities (does not fit the definition of a vitamin). |
Vitamin G | Riboflavin | Reclassified as Vitamin B2 |
Vitamin H | Biotin | Reclassified as Vitamin B7 |
Vitamin J | Catechol, Flavin | Catechol nonessential; flavin reclassified as Vitamin B2 |
Vitamin L1 | Anthranilic acid | Non essential |
Vitamin L2 | Adenylthiomethylpentose | RNA metabolite; synthesized in body |
Vitamin M | Folic acid | Reclassified as Vitamin B9 |
Vitamin O | Carnitine | Synthesized in body |
Vitamin P | Flavonoids | No longer classified as a vitamin |
Vitamin PP | Niacin | Reclassified as Vitamin B3 |
Vitamin S | Salicylic acid | Proposed inclusion of salicylate as an essential micronutrient |
Vitamin U | S-Methylmethionine | Protein metabolite; synthesized in body |