Transcytosis is a type of transcellular transport in which various macromolecules are transported across the interior of a cell. Macromolecules are captured in vesicles on one side of the cell, drawn across the cell, and ejected on the other side. Examples of macromolecules transported include IgA,transferrin, and insulin. While transcytosis is most commonly observed in cells of an epithelium, the process is also present elsewhere. Blood capillaries are a well-known site for transcytosis, though it occurs in other cells, including neurons,osteoclasts and M cells of the intestine.
The regulation of transcytosis varies greatly due to the many different tissues in which this process is observed. Various tissue specific mechanisms of transcytosis have been identified. Brefeldin A, a commonly used inhibitor of ER to Golgi apparatus transport, has been shown to inhibit transcytosis in dog kidney cells which provided the first clues as to the nature of transcytosis regulation. Transcytosis in dog kidney cells has also been shown be regulated at the apical membrane by Rab17, as well as Rab11a and Rab25. Further work on dog kidney cells has shown that a signaling cascade involving the phosphorylation of EGFR by Yes leading to the activation of Rab11FIP5 by MAPK1 upregulates transcytosis. Transcytosis has been shown to be inhibited by the combination of progesterone and estradiol followed by activation mediated by prolactin in the rabbit mammary gland during pregnancy. In the thyroid, follicular cell transcytosis is regulated positively by TSH. The phosphorylation of caveolin 1 induced by hydrogen peroxide has been shown to be critical to the activation of transcytosis in pulmonary vascular tissue. It can therefore be concluded that the regulation of transcytosis is a complex process that varies between tissues.