*** Welcome to piglix ***

Tmeda

Tetramethylethylenediamine
Skeletal formula of tetramethylethylenediamine with some implicit hydrogens shown
Ball and stick model of tetramethylethylenediamine
Names
Other names
N,N,N′,N′-Tetramethylethane-1,2-diamine
Identifiers
110-18-9 YesY
3D model (Jmol) Interactive image
Abbreviations TMEDA, TEMED
1732991
ChEBI CHEBI:32850 N
ChemSpider 7746 N
ECHA InfoCard 100.003.405
EC Number 203-744-6
2707
MeSH N,N,N',N'-tetramethylethylenediamine
PubChem 8037
RTECS number KV7175000
UN number 2372
Properties
C6H16N2
Molar mass 116.21 g·mol−1
Appearance Colorless liquid
Odor Fishy, ammoniacal
Density 0.7765 g mL−1 (at 20 °C)
Melting point −58.6 °C; −73.6 °F; 214.5 K
Boiling point 121.1 °C; 249.9 °F; 394.2 K
Miscible
Acidity (pKa) 8.97
Basicity (pKb) 5.85
1.4179
Hazards
Safety data sheet See: data page
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
H225, H302, H314, H332
P210, P280, P305+351+338, P310
Highly Flammable F Corrosive C
R-phrases R11, R20/22, R34
S-phrases (S1/2), S16, S26, S36/37/39, S45
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 20 °C (68 °F; 293 K)
Explosive limits 0.98–9.08%
Lethal dose or concentration (LD, LC):
LD50 (median dose)
  • 5.39 g kg−1(dermal, rabbit)
  • 268 mg kg−1(oral, rat)
Related compounds
Related amines
Triethylenetetramine
Related compounds
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Tetramethylethylenediamine (TMEDA or TEMED) is a chemical compound with the formula (CH3)2NCH2CH2N(CH3)2. This species is derived from ethylenediamine by replacement of the four amine hydrogens with four methyl groups. It is a colorless liquid, although old samples often appear yellow. Its odor is remarkably similar to that of rotting fish.

TMEDA is widely employed as a ligand for metal ions. It forms stable complexes with many metal halides, e.g. zinc chloride and copper(I) iodide, giving complexes that are soluble in organic solvents. In such complexes, TMEDA serves as a bidentate ligand.

TMEDA has an affinity for lithium ions. When mixed with n-butyllithium, TMEDA's nitrogen atoms coordinate to the lithium, forming a cluster of higher reactivity than the tetramer or hexamer that n-butyllithium normally adopts. BuLi/TMEDA is able to metallate or even doubly metallate many substrates including benzene, furan, thiophene, N-alkylpyrroles, and ferrocene. Many anionic organometallic complexes have been isolated as their [Li(tmeda)2]+ complexes. In such complexes [Li(tmeda)2]+ behaves like a quaternary ammonium salt, such as [NEt4]+.

It is also worth noting that s-BuLi/TMEDA is also a useful combination in organic synthesis. Utilization of this is useful in cases where the n-butyl anion is able to add into the starting material due to its weak nucleophilic nature. TMEDA is still capable of forming a metal complex with Li in this case as mentioned above.

TMEDA is used with ammonium persulfate to catalyze the polymerization of acrylamide when making polyacrylamide gels, used in gel electrophoresis, for the separation of proteins or nucleic acids. Although the amounts used in this technique may vary from method to method, 0.1–0.2% v/v TMEDA is a "traditional" range. TMEDA can also be a component of Hypergolic propellants.


...
Wikipedia

...