Names | |
---|---|
IUPAC name
Ammonium perchlorate
|
|
Other names
AP
|
|
Identifiers | |
7790-98-9 | |
3D model (Jmol) | Interactive image |
ChemSpider | 23041 |
ECHA InfoCard | 100.029.305 |
EC Number | 232-235-1 |
RTECS number | SC7520000 |
UN number | 1442 |
|
|
|
|
Properties | |
NH4ClO4 | |
Molar mass | 117.49 g/mol |
Appearance | White Crystalline |
Density | 1.95 g/cm3 |
Melting point | Exothermic decomposition before melting at >200 °C |
11.56 g/100 mL (0 °C) 20.85 g/100 mL (20 °C) 57.01 g/100 mL (100 °C) |
|
Solubility | Soluble in Methanol partially soluble in Acetone insoluble in Ether |
Structure | |
Orthorhombic (< 513 K) Cubic (> 513 K) |
|
Hazards | |
Safety data sheet | External MSDS |
EU classification (DSD)
|
Oxidant (O) |
R-phrases | R9, R44 |
S-phrases | (S2), S14, S16, S27, S36/37 |
NFPA 704 | |
240 °C (464 °F; 513 K) | |
Related compounds | |
Other anions
|
Ammonium chlorate Ammonium chloride |
Other cations
|
Potassium perchlorate Sodium perchlorate Lithium perchlorate |
Related compounds
|
Perchloric acid |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Ammonium perchlorate ("AP") is an inorganic compound with the formula NH4ClO4. It is colorless or white solid that is soluble in water. Perchlorate is a powerful oxidizer and ammonium is a good fuel. This combination explains the usefulness of this material as a propellant in rockets and missiles. It has been involved in a number of accidents, such as the PEPCON disaster.
Ammonium perchlorate (AP) is produced by reaction between ammonia and perchloric acid. This process is the main outlet for the industrial production of perchloric acid. The salt also can be produced by salt metathesis reaction of ammonium salts with sodium perchlorate. This process exploits the relatively low solubility of NH4ClO4, which is about 10% of that for sodium perchlorate.
AP crystallises as colorless rhombohedra.
Like most ammonium salts, ammonium perchlorate decomposes before melting. Mild heating results in production of hydrogen chloride, nitrogen, oxygen, and water.
The combustion of AP is quite complex and is widely studied. AP crystals decompose before melting, even though a thin liquid layer has been observed on crystal surfaces during high-pressure combustion processes. Strong heating may lead to explosions. Complete reactions leave no residue. Pure crystals cannot sustain a flame below the pressure of 2 MPa.
AP is a Class 4 oxidizer (can undergo an explosive reaction) for particle sizes over 15 micrometres and is classified as an explosive for particle sizes less than 15 micrometres.
The primary use of ammonium perchlorate is in making solid fuel propellants. When AP is mixed with a fuel (like a powdered aluminium and/or with an elastomeric binder), it can generate self-sustained combustion at far under atmospheric pressure. It is an important oxidizer with a decades-long history of use in solid rocket propellants — space launch (including the Space Shuttle Solid Rocket Booster), military, amateur, and hobby high-power rockets, as well as in some fireworks.