Platelet-derived growth factor (PDGF) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Platelet-derived growth factor BB monomer, Human
|
|||||||||
Identifiers | |||||||||
Symbol | PDGF | ||||||||
Pfam | PF00341 | ||||||||
InterPro | IPR000072 | ||||||||
PROSITE | PDOC00222 | ||||||||
SCOP | 1pdg | ||||||||
SUPERFAMILY | 1pdg | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
Platelet-derived growth factor (PDGF) is one of the numerous growth factors, or proteins that regulate cell growth and division. In particular, it plays a significant role in blood vessel formation (angiogenesis), the growth of blood vessels from already-existing blood vessel tissue. Uncontrolled angiogenesis is a characteristic of cancer. In chemical terms, platelet-derived growth factor is a dimeric glycoprotein composed of two A (-AA) or two B (-BB) chains or a combination of the two (-AB).
PDGF is a potent mitogen for cells of mesenchymal origin, including fibroblasts, smooth muscle cells and glial cells. In both mouse and human, the PDGF signalling network consists of four ligands, PDGFA-D, and two receptors, PDGFRalpha and PDGFRbeta. All PDGFs function as secreted, disulphide-linked homodimers, but only PDGFA and B can form functional heterodimers.
Though PDGF is synthesized, stored (in the alpha granules of platelets), and released by platelets upon activation, it is also produced by a plethora of cells including smooth muscle cells, activated macrophages, and endothelial cells
Recombinant PDGF is used in medicine to help heal chronic ulcers and in orthopedic surgery and periodontistry to treat bone loss.
There are five different isoforms of PDGF that activate cellular response through two different receptors. Known ligands include A (PDGFA), B (PDGFB), C (PDGFC), and D (PDGFD), and an AB heterodimer and receptors alpha (PDGFRA) and beta (PDGFRB). PDGF has few other members of the family, for example VEGF sub-family.