Cyclotide family | |||||||||
---|---|---|---|---|---|---|---|---|---|
Structure and sequence of the prototypic cyclotide kalata B1
|
|||||||||
Identifiers | |||||||||
Symbol | Cyclotide | ||||||||
Pfam | PF03784 | ||||||||
InterPro | IPR005535 | ||||||||
PROSITE | PDOC51052 | ||||||||
SCOP | 1kal | ||||||||
SUPERFAMILY | 1kal | ||||||||
OPM superfamily | 64 | ||||||||
OPM protein | 1nb1 | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
Cyclotides are small disulfide rich peptides isolated from plants. Typically containing 28-37 amino acids, they are characterized by their head-to-tail cyclised peptide backbone and the interlocking arrangement of their three disulfide bonds. These combined features have been termed the cyclic cystine knot (CCK) motif. To date, over 100 cyclotides have been isolated and characterized from species of the Rubiaceae, Violaceae, and Cucurbitaceae families. Cyclotides have also been identified in agriculturally important families such as the Fabaceae and Poaceae.
Cyclotides have a well-defined three-dimensional structure as a result of their interlocking disulfide bonds and cyclic peptide backbone. Backbone loops and selected residues are labeled on the structure to help orientation. The amino acid sequence (single letter amino acid representation) for this peptide is indicated on the sequence diagram to the right. One of the interesting features of cyclic peptides is that knowledge of the peptide sequence does not reveal the ancestral head and tail; knowledge of the gene sequence is required for this. In the case of kalata B1 the indicated glycine (G) and asparagine (N) amino acids are the terminal residues that are linked in a peptide bond to cyclise the peptide.
Cyclotides have been reported to have a wide range of biological activities, including anti-HIV, insecticidal, anti-tumour, antifouling, anti-microbial, hemolytic, neurotensin antagonism, trypsin inhibition, and uterotonic activities. An ability to induce uterine contractions was what prompted the initial discovery of kalata B1.