*** Welcome to piglix ***

Asparagine

L-Asparagine
Skeletal formula of L-asparagine
Ball-and-stick model of the L-asparagine molecule as a zwitterion
Names
IUPAC name
Asparagine
Other names
2-Amino-3-carbamoylpropanoic acid
Identifiers
70-47-3 YesY
3D model (Jmol) Interactive image
Interactive image
ChEBI CHEBI:17196 YesY
ChEMBL ChEMBL58832 YesY
ChemSpider 6031 YesY
DrugBank DB03943 YesY
ECHA InfoCard 100.000.669
EC Number 200-735-9
4533
KEGG C00152 YesY
PubChem 236
UNII 7NG0A2TUHQ YesY
Properties
C4H8N2O3
Molar mass 132.12 g·mol−1
Appearance white crystals
Density 1.543 g/cm3
Melting point 234 °C (453 °F; 507 K)
Boiling point 438 °C (820 °F; 711 K)
2.94 g/100 mL
Solubility soluble in acids, bases, negligible in methanol, ethanol, ether, benzene
log P −3.82
Acidity (pKa) 2.02 (carboxyl), 8.80 (amino)
-69.5·10−6 cm3/mol
Structure
orthorhomic
Thermochemistry
−789.4 kJ/mol
Hazards
Safety data sheet See: data page
Sigma-Alrich
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 219 °C (426 °F; 492 K)
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Asparagine (abbreviated as Asn or N), encoded by the codons AAU and AAC, is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH+
3
form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain carboxamide, classifying it as a polar (at physiological pH), aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it. A reaction between asparagine and reducing sugars or other source of carbonyls produces acrylamide in food when heated to sufficient temperature. These products occur in baked goods such as French fries, potato chips, and toasted bread.

Asparagine was first isolated in 1806 in a crystalline form by French chemists Louis Nicolas Vauquelin and Pierre Jean Robiquet (then a young assistant) from asparagus juice, in which it is abundant, hence the chosen name. It was the first amino acid to be isolated.

Three years later, in 1809, Pierre Jean Robiquet identified a substance from liquorice root with properties he qualified as very similar to those of asparagine, and that Plisson identified in 1828 as asparagine itself.

Since the asparagine side-chain can form hydrogen bond interactions with the peptide backbone, asparagine residues are often found near the beginning of alpha-helices as asx turns and asx motifs, and in similar turn motifs, or as amide rings, in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions that would otherwise be satisfied by the polypeptide backbone. Glutamines, with an extra methylene group, have more conformational entropy and thus are less useful for capping.


...
Wikipedia

...