*** Welcome to piglix ***

Benzotrifluoride

Trifluorotoluene
Benzotrifluoride.png
Trifluorotoluene-3D-balls.png
Names
Other names
Benzotrifluoride (BTF)
α,α,α-Trifluorotoluene
CF3Ph
PhCF3
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.396
EC Number 202-635-0
PubChem CID
Properties
C6H5CF3
Molar mass 146.11 g/mol
Appearance colorless liquid
Odor aromatic
Density 1.19 g/mL at 20 °C
Melting point −29.05 °C (−20.29 °F; 244.10 K)
Boiling point 103.46 °C (218.23 °F; 376.61 K)
<0.1 g/100 mL at 21 ºC
Solubility soluble in ether, benzene, ethanol, acetone
miscible in n-heptane, CCl4
1.41486 (13 °C)
Hazards
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline Health code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g., sodium chloride Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 12 °C (54 °F; 285 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Trifluorotoluene is an organic compound with the formula of C6H5CF3. This colorless fluorocarbon is used as a specialty solvent in organic synthesis and an intermediate in the production of pesticides and pharmaceuticals.

For small-scale laboratory preparations, trifluorotoluene is synthesized by coupling an aromatic halide and trifluoromethyl iodide in the presence of a copper catalyst:

Industrial production is done via reacting benzotrichloride with hydrogen fluoride in a pressurized reactor.

Trifluorotoluene has a variety of niche uses.

According to Ogawa and Curran, trifluorotoluene is similar to dichloromethane in standard acylation, tosylation, and silylation reactions. The dielectric constants for dichloromethane and trifluorotoluene are 9.04 and 9.18, respectively, indicating similar solvating properties. Dipole moments compare less favorably: 1.89 and 2.86 D for dichloromethane and trifluorotoluene, respectively. Replacing dichloromethane is advantageous when conditions require higher boiling solvents since trifluorotoluene boils 62 °C higher than dichloromethane (b.p. 40 °C).

As a solvent, trifluorotoluene is useful in mild Lewis-acid catalyzed reactions, such as the Friedel-Crafts preparations. The most common catalyst, aluminium trichloride reacts with trifluorotoluene at room temperature; however, zinc chloride does not.

A second and perhaps more valuable use of trifluorotoluene is as a synthetic intermediate. A derivative of trifluorotoluene, 3-aminobenzotrifluoride, is the precursor to the herbicide fluometuron. It is synthesized via nitration followed by reduction to meta-H2NC6H4CF3. This aniline is then converted to the urea.


...
Wikipedia

...