Organic synthesis is a special branch of chemical synthesis and is concerned with the construction of organic compounds via organic reactions. Organic molecules often contain a higher level of complexity than purely inorganic compounds, so that the synthesis of organic compounds has developed into one of the most important branches of organic chemistry. There are several main areas of research within the general area of organic synthesis: total synthesis, semisynthesis, and methodology.
A total synthesis is the complete chemical synthesis of complex organic molecules from simple, commercially available (petrochemical) or natural precursors. Total synthesis may be accomplished either via a linear or convergent approach. In a linear synthesis—often adequate for simple structures—several steps are performed one after another until the molecule is complete; the chemical compounds made in each step are called synthetic intermediates. For more complex molecules, a convergent synthetic approach may be preferable, one that involves individual preparation of several "pieces" (key intermediates), which are then combined to form the desired product.
Robert Burns Woodward, who received the 1965 Nobel Prize for Chemistry for several total syntheses (e.g., his 1954 synthesis of strychnine), is regarded as the father of modern organic synthesis. Some latter-day examples include Wender's,Holton's,Nicolaou's, and Danishefsky's total syntheses of the anti-cancer therapeutic, paclitaxel (trade name, Taxol).