Names | |
---|---|
Other names
Zinc selenide
Stilleite |
|
Identifiers | |
1315-09-9 | |
ECHA InfoCard | 100.013.873 |
PubChem | 4298215 |
Properties | |
ZnSe | |
Molar mass | 144.35 g/mol |
Appearance | light yellow solid |
Density | 5.27 g/cm3 |
Melting point | 1,525 °C (2,777 °F) |
negligible | |
Band gap | 2.82 eV (10 K) |
Refractive index (nD)
|
2.67 (550 nm) 2.40 (10.6 µm) |
Structure | |
Zincblende (cubic) | |
a = 566.8 pm
|
|
Tetrahedral (Zn2+) Tetrahedral (Se2−) |
|
Thermochemistry | |
Std enthalpy of
formation (ΔfH |
−177.6 kJ/mol |
Hazards | |
EU classification (DSD)
|
Toxic (T) Dangerous for the environment (N) |
R-phrases | R23/25, R33, R50/53 |
S-phrases | (S1/2), S20/21, S28, S45, S60, S61 |
Related compounds | |
Other anions
|
Zinc oxide Zinc sulfide Zinc telluride |
Other cations
|
Cadmium selenide Mercury selenide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Zinc selenide (ZnSe) is a light-yellow, solid compound comprising zinc (Zn) and selenium (Se). It is an intrinsic semiconductor with a band gap of about 2.70 eV at 25 °C (77 °F). ZnSe rarely occurs in nature, and is found in the mineral that was named after Hans Stille called "stilleite."
ZnSe can be made in both hexagonal (wurtzite) and cubic (zincblende) crystal structure.
It is a wide-bandgap semiconductor of the II-VI semiconductor group (since zinc and selenium belong to the 12th and 16th groups of the periodic table, respectively). The material can be doped n-type doping with, for instance, halogen elements. P-type doping is more difficult, but can be achieved by introducing gallium.
ZnSe is insoluble in water, but reacts with acids to form toxic hydrogen selenide gas.
It can be deposited as a thin film by chemical vapour deposition techniques including MOVPE and vacuum evaporation.