*** Welcome to piglix ***

Hydrogen selenide

Hydrogen selenide
Structural diagram of the hydrogen selenide molecule
Space-filling model of the hydrogen selenide molecule
Names
IUPAC name
Hydrogen selenide
Other names
Hydroselenic acid
selane
selenium hydride
Identifiers
7783-07-5 YesY
3D model (Jmol) Interactive image
ChEBI CHEBI:16503 YesY
ChemSpider 518 YesY
ECHA InfoCard 100.029.071
KEGG C01528 YesY
PubChem 533
RTECS number X1050000
UNII V91P54KPAM N
UN number 2202
Properties
H2Se
Molar mass 80.98 g/mol
Appearance Colorless gas
Odor decayed horseradish
Density 3.553 g/cm3
Melting point −65.73 °C (−86.31 °F; 207.42 K)
Boiling point −41.25 °C (−42.25 °F; 231.90 K)
0.70 g/100 mL
Solubility soluble in CS2, phosgene
Vapor pressure 9.5 atm (21°C)
Acidity (pKa) 3.89
Structure
Bent
Hazards
Safety data sheet ICSC 0284
Extremely Flammable F+ Toxic T Dangerous for the Environment (Nature) N
R-phrases R23/25, R33, R50/53
S-phrases (S1/2), S20/21, S28, S45, S60, S61
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point flammable gas
Lethal dose or concentration (LD, LC):
0.3 ppm (guinea pig, 8 hr)
5.9 ppm (rat, 1 hr)
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.05 ppm (0.2 mg/m3)
REL (Recommended)
TWA 0.05 ppm (0.2 mg/m3)
IDLH (Immediate danger)
1 ppm
Related compounds
Other anions
H2O
H2S
H2Te
H2Po
Other cations
Na2Se
Ag2Se
Related compounds
Arsine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound with an exposure limit of 0.05 ppm over an 8-hour period. Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or 'leaking gas', but smells of rotten eggs at higher concentrations.

H2Se adopts a "bent" structure with a H-Se-H bond angle of 91°. Consistent with this structure, three IR-active vibrational bands are observed: 2358, 2345, and 1034 cm−1.

The properties of H2S and H2Se are similar, although the selenide is more acidic with pKa = 3.89, and the second pKa = 11.0 at 25 °C. Reflecting its acidity, H2Se is soluble in water.

Industrially, it is produced by treating elemental selenium at T > 300 °C with hydrogen gas. A number of routes to H2Se have been reported, which are suitable for both large and small scale preparations. In the laboratory, H2Se is usually prepared by the action of water on Al2Se3, concomitant with formation of hydrated alumina. A related reaction involves the acid hydrolysis of FeSe.

H2Se can also be prepared by means of different methods based on the in situ generation in aqueous solution using boron hydride, Marsh test and Devarda's alloy. According to the Sonoda method, H2Se is generated from the reaction of H2O and CO on Se in the presence of Et3N. H2Se can be purchased in cylinders.

Elemental selenium can be recovered from H2Se through a reaction with aqueous sulfur dioxide (SO2).


...
Wikipedia

...