*** Welcome to piglix ***

Iron(III) sulfate

Iron(III) sulfate
Iron(III) sulfate
Names
IUPAC name
Iron(III) sulfate
Other names
Ferric sulfate
Sulfuric acid, iron(3+) salt (3:2)
Identifiers
3D model (Jmol)
ChEBI
ChemSpider
ECHA InfoCard 100.030.054
PubChem CID
RTECS number NO8505000
UNII
Properties
Fe2(SO4)3
Molar mass 399.88 g/mol (anhydrous)
489.96 g/mol (pentahydrate)
562.00 g/mol (nonahydrate)
Appearance grayish-white crystals
Density 3.097 g/cm3 (anhydrous)
1.898 g/cm3 (pentahydrate)
Melting point 480 °C (896 °F; 753 K) (anhydrous)
175 °C (347 °F) (nonahydrate)
slightly soluble
Solubility sparingly soluble in alcohol
negligible in acetone, ethyl acetate
insoluble in sulfuric acid, ammonia
1.814 (anhydrous)
1.552 (nonahydrate)
Hazards
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Lethal dose or concentration (LD, LC):
LD50 (median dose)
500 mg/kg (oral, rat)
US health exposure limits (NIOSH):
REL (Recommended)
TWA 1 mg/m3
Related compounds
Other anions
Iron(III) chloride
Iron(III) nitrate
Related compounds
Iron(II) sulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Iron(III) sulfate (or ferric sulfate), is the chemical compound with the formula Fe2(SO4)3, the sulfate of trivalent iron. Usually yellow, it is a rhombic crystalline salt and soluble in water at room temperature. It is used in dyeing as a mordant, and as a coagulant for industrial wastes. It is also used in pigments, and in pickling baths for aluminum and steel. Medically it is used as an astringent and styptic.

Mikasaite, a mixed iron-aluminium sulfate of chemical formula (Fe3+, Al3+)2(SO4)3 is the name of mineralogical form of iron(III) sulfate. This anhydrous form occurs very rarely and is connected with coal fires. The hydrates are more common, with coquimbite (nonahydrate) as probably the most often met among them. Paracoquimbite is the other, rarely met natural nonahydrate. Kornelite (heptahydrate) and quenstedtite (decahydrate) are rarely found. Lausenite (hexa- or pentahydrate) is a doubtful species. All the mentioned natural hydrates are unstable compounds connected with Fe-bearing primary minerals (mainly pyrite and marcasite) oxidation in ore beds. In the solutions of the ore beds oxidation zones the iron(III) sulfate is also an important oxidative agent.

Iron(III) sulfate is produced on a large scale by reacting sulfuric acid, a hot solution of ferrous sulfate, and an oxidizing agent (such as nitric acid or hydrogen peroxide).

Ferric sulfate and jarosite have been detected by the two martian rovers Spirit and Opportunity. These substances are indicative of strongly oxidizing conditions prevailing at the surface of Mars. In May 2009, the Spirit rover became stuck when it drove over a patch of soft ferric sulfate that had been hidden under a veneer of normal-looking soil. Because iron sulfate has very little cohesion, the rover's wheels could not gain sufficient traction to pull the body of the rover out of the iron sulfate patch. Multiple techniques were attempted to extricate the rover, but the wheels eventually sunk so deeply into the iron sulfate that the body of the rover came to rest on the martian surface, preventing the wheels from exerting any force on the material below them. As the JPL team failed to recover the mobility of Spirit, it signified the end of the journey for the rover.


...
Wikipedia

...