Names | |
---|---|
Other names
Indium(III) phosphide
|
|
Identifiers | |
22398-80-7 | |
3D model (Jmol) | Interactive image |
ChemSpider | 28914 |
ECHA InfoCard | 100.040.856 |
PubChem | 31170 |
|
|
|
|
Properties | |
InP | |
Molar mass | 145.792 g/mol |
Appearance | black cubic crystals |
Density | 4.81 g/cm3, solid |
Melting point | 1,062 °C (1,944 °F; 1,335 K) |
Solubility | slightly soluble in acids |
Band gap | 1.344 eV (300 K; direct) |
Electron mobility | 5400 cm2/(V·s) (300 K) |
Thermal conductivity | 0.68 W/(cm·K) (300 K) |
Refractive index (nD)
|
3.1 (infrared); 3.55 (632.8 nm) |
Structure | |
Zinc blende | |
a = 5.8687 Å
|
|
Tetrahedral | |
Thermochemistry | |
45.4 J/(mol·K) | |
Std molar
entropy (S |
59.8 J/(mol·K) |
Std enthalpy of
formation (ΔfH |
-88.7 kJ/mol |
Hazards | |
Main hazards | Toxic, hydrolysis to phosphine |
Safety data sheet | External MSDS |
Related compounds | |
Other anions
|
Indium nitride Indium arsenide Indium antimonide |
Other cations
|
Aluminium phosphide Gallium phosphide |
Related compounds
|
Indium gallium phosphide Aluminium gallium indium phosphide Gallium indium arsenide antimonide phosphide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.
Indium phosphide can be prepared from the reaction of white phosphorus and indium iodide at 400 °C., also by direct combination of the purified elements at high temperature and pressure, or by thermal decomposition of a mixture of a trialkyl indium compound and phosphine.
InP is used in high-power and high-frequency electronics because of its superior electron velocity with respect to the more common semiconductors silicon and gallium arsenide.
It was used with indium gallium arsenide to make a record breaking pseudomorphic heterojunction bipolar transistor that could operate at 604 GHz.
It also has a direct bandgap, making it useful for optoelectronics devices like laser diodes.
InP is also used as a substrate for epitaxial indium gallium arsenide based opto-electronic devices.
Indium phosphide also has one of the longest-lived optical phonons of any compound with the zincblende crystal structure.