*** Welcome to piglix ***

Indium iodide


There are three sets of indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.
The intermediate halides contain indium with oxidation states, +1, +2 and +3.

In all of the trihalides the oxidation state of indium is +3, and their proper names are indium(III) fluoride, indium(III) chloride, indium(III) bromide, and indium(III) iodide. The trihalides are Lewis acidic. Indium trichloride is a starting point in the production of trimethylindium which is used in the semiconductor industry.

InF3 is a white crystalline solid with mp 1170 °C. Its structure contains 6 coordinate indium.

InCl3 is a white crystalline solid mp 586 °C. It has the same structure as AlCl3.

InBr3 is a pale yellow crystalline solid, m.p. 435 °C. It has the same structure as AlCl3. InBr3 is finding some use in organic synthesis as a water tolerant Lewis acid.

InI3 is a coloured crystalline solid, usually described as orange. Distinct yellow and a red forms are known. The red form undergoes a transition to the yellow at 57 °C. The structure of the red form has not been determined by X-ray crystallography, however spectroscopic evidence indicates that indium may be six coordinate. The yellow form consists of In2I6 with 4 coordinate indium centres. It is used as an "iodide getter" in the Cativa process.

A surprising number of intermediate chlorides and bromides are known, but only one iodide, and no difluoride. Rather than the apparent oxidation state of +2, these compounds contain indium in the +1 and +3 oxidation states. Thus the diiodide is described as InIInIIIX4. It was some time later that the existence of compounds containing the anion In2Br62− were confirmed which contains an indium-indium bond. Early work on the chlorides and bromides involved investigations of the binary phase diagrams of the trihalides and the related monohalide. Many of the compounds were initially misidentified as many of them are incongruent and decompose before melting. The majority of the previously reported chlorides and bromides have now either had their existence and structures confirmed by X Ray diffraction studies or have been consigned to history. Perhaps the most unexpected case of mistaken identity was the surprising result that a careful reinvestigation of the InCl/InCl3 binary phase diagram did not find InCl2.
The reason for this abundance of compounds is that indium forms 4 and 6 coordinate anions containing indium(III) e.g. InBr4, InCl63− as well as the anion In2Br62− that surprisingly contains an indium-indium bond.


...
Wikipedia

...