Clinical data | |
---|---|
Trade names | Razadyne |
AHFS/Drugs.com | Monograph |
MedlinePlus | a699058 |
Pregnancy category |
|
Routes of administration |
Oral |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 80 to 100% |
Protein binding | 18% |
Metabolism | Hepatic partially :CYP2D6/3A4 substrate |
Biological half-life | 7 hours |
Excretion | Renal (95%, of which 32% unchanged), fecal (5%) |
Identifiers | |
|
|
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
PDB ligand | |
ECHA InfoCard | 100.118.289 |
Chemical and physical data | |
Formula | C17H21NO3 |
Molar mass | 287.354 g/mol |
3D model (Jmol) | |
Melting point | 126.5 °C (259.7 °F) |
|
|
|
|
Uses | |
---|---|
treatment of dementia caused by Alzheimer's disease | |
Who might take | |
adults who have mid-to-moderate Alzheimer's disease as indicated by the Mini–mental state examination | |
Precautions | |
|
|
Other options | |
|
Galantamine (Nivalin, Razadyne, Razadyne ER, Reminyl, Lycoremine) is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. It is an alkaloid that is obtained synthetically or from the bulbs and flowers of Galanthus caucasicus (Caucasian snowdrop), Galanthus woronowii (Voronov's snowdrop), and some other members of the family Amaryllidaceae such as Narcissus (daffodil), Leucojum aestivum (snowflake), and Lycoris including Lycoris radiata (red spider lily).
Studies of usage in modern medicine began in the Soviet Union in the 1950s. The active ingredient was extracted, identified, and studied, in particular in relation to its acetylcholinesterase (AChE)-inhibiting properties. The bulk of the work was carried out by Soviet pharmacologists M. D. Mashkovsky and R. P. Kruglikova–Lvova, beginning in 1951. The work of Mashkovsky and Kruglikova-Lvova was the first published work that demonstrated the AChE-inhibiting properties of galantamine.
The first industrial process was developed in Bulgaria by prof. Paskov in 1959 (Nivalin, Sopharma) from a species traditionally used as a popular medicine in Eastern Europe, and, thus, the idea for developing a medicine from these species seems to be based on the local use (i.e., an ethnobotany-driven drug discovery).