Probability density function
|
|
Cumulative distribution function
|
|
Parameters | radius (real) |
---|---|
Support | |
CDF |
for |
Mean | |
Median | |
Mode | |
Variance | |
Skewness | |
Ex. kurtosis | |
Entropy | |
MGF | |
CF |
The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution supported on the interval [−R, R] the graph of whose probability density function f is a semicircle of radius R centered at (0, 0) and then suitably normalized (so that it is really a semi-ellipse):
for −R ≤ x ≤ R, and f(x) = 0 if R < |x|.
This distribution arises as the limiting distribution of eigenvalues of many random symmetric matrices as the size of the matrix approaches infinity.
It is a scaled beta distribution, more precisely, if Y is beta distributed with parameters α = β = 3/2, then X = 2RY – R has the above Wigner semicircle distribution.
The Chebyshev polynomials of the second kind are orthogonal polynomials with respect to the Wigner semicircle distribution.
For positive integers n, the 2n-th moment of this distribution is
where X is any random variable with this distribution and Cn is the nth Catalan number
so that the moments are the Catalan numbers if R = 2. (Because of symmetry, all of the odd-order moments are zero.)
Making the substitution into the defining equation for the moment generating function it can be seen that: