*** Welcome to piglix ***

Probability density function


In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function that describes the relative likelihood for this random variable to take on a given value. The probability of the random variable falling within a particular range of values is given by the integral of this variable’s density over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and its integral over the entire space is equal to one.

The terms "probability distribution function" and "probability function" have also sometimes been used to denote the probability density function. However, this use is not standard among probabilists and statisticians. In other sources, "probability distribution function" may be used when the probability distribution is defined as a function over general sets of values, or it may refer to the cumulative distribution function, or it may be a probability mass function (PMF) rather than the density. Further confusion of terminology exists because density function has also been used for what is here called the "probability mass function" (PMF). In general though, the PMF is used in the context of discrete random variables (random variables that take values on a discrete set), while PDF is used in the context of continuous random variables.

Suppose a species of bacteria typically lives 4 to 6 hours. What is the probability that a bacterium lives exactly 5 hours? The answer is 0%. A lot of bacteria live for approximately 5 hours, but there is no chance that any given bacterium dies at exactly 5.0000000000... hours.

Instead we might ask: What is the probability that the bacterium dies between 5 hours and 5.01 hours? Let's say the answer is 0.02 (i.e., 2%). Next: What is the probability that the bacterium dies between 5 hours and 5.001 hours? The answer is probably around 0.002, since this is 1/10th of the previous interval. The probability that the bacterium dies between 5 hours and 5.0001 hours is probably about 0.0002, and so on.


...
Wikipedia

...