*** Welcome to piglix ***

Water-gas shift reaction


The water-gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen (the mixture of carbon monoxide and hydrogen is known as water gas):

The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with iron to produce iron, iron oxide and hydrogen. With the development of industrial processes that required hydrogen, such as the Haber–Bosch ammonia synthesis, a less expensive and more efficient method of hydrogen production was needed. As a resolution to this problem, the WGSR was combined with the gasification of coal to produce a pure hydrogen product. As the idea of hydrogen economy gains popularity, the focus on hydrogen as a replacement fuel source for hydrocarbons is increasing.

The WGSR is an important industrial reaction that is used in the manufacture of ammonia, hydrocarbons, methanol, and hydrogen. It is also often used in conjunction with steam reforming of methane and other hydrocarbons. In the Fischer–Tropsch process, the WGSR is one of the most important reactions used to balance the H2/CO ratio. It provides a source of hydrogen at the expense of carbon monoxide, which is important for the production of high purity hydrogen for use in ammonia synthesis.

The water-gas shift reaction may be an undesired side reaction in processes involving water and carbon monoxide, e.g. the rhodium-based Monsanto process. The iridium-based Cativa process uses less water, which suppresses this reaction.

The WGSR can aid in the efficiency of fuel cells by increasing hydrogen production. The WGSR is considered a critical component in the reduction of carbon monoxide concentrations in cells that are susceptible to carbon monoxide poisoning such as the proton exchange membrane (PEM) fuel cell. The benefits of this application are two-fold: not only would the water gas shift reaction effectively reduce the concentration of carbon monoxide, but it would also increase the efficiency of the fuel cells by increasing hydrogen production. Unfortunately, current commercial catalysts that are used in industrial water gas shift processes are not compatible with fuel cell applications. With the high demand for clean fuel and the critical role of the water gas shift reaction in hydrogen fuel cells, the development of water gas shift catalysts for the application in fuel cell technology is an area of current research interest.


...
Wikipedia

...