The Monsanto process is an industrial method for the manufacture of acetic acid by catalytic carbonylation of methanol. The Monsanto process has largely been supplanted by the Cativa process, a similar iridium-based process developed by BP Chemicals Ltd which is more economical and environmentally friendly.
This process operates at a pressure of 30–60 atm and a temperature of 150–200 °C and gives a selectivity greater than 99%. It was developed in 1960 by the German chemical company, BASF, and improved by the Monsanto Company in 1966, which introduced a new catalyst system.
The catalytically active species is the anion cis-[Rh(CO)2I2]− (top of scheme). The first organometallic step is the oxidative addition of methyl iodide to cis-[Rh(CO)2I2]− to form the hexacoordinate species [(CH3)Rh(CO)2I3]−. This anion rapidly transforms, via the migration of a methyl group to an adjacent carbonyl ligand, affording the pentacoordinate acetyl complex [(CH3CO)Rh(CO)I3]−. This five-coordinate complex then reacts with carbon monoxide to form the six-coordinate dicarbonyl complex, which undergoes reductive elimination to release acetyl iodide (CH3C(O)I). The catalytic cycle involves two non-organometallic steps: conversion of methanol to methyl iodide and the hydrolysis of the acetyl iodide to acetic acid and hydrogen iodide.