Names | |
---|---|
IUPAC name
Vanadium trichloride oxide
|
|
Other names
|
|
Identifiers | |
3D model (Jmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.028.892 |
EC Number | 231-780-2 |
MeSH | trichlorooxo+vanadium |
RTECS number | YW2975000 |
UN number | 2443 |
|
|
|
|
Properties | |
VOCl 3 |
|
Molar mass | 173.300 g mol−1 |
Appearance | Vivid orange, transparent liquid |
Density | 1.826 g mL−1 |
Melting point | −76.5 °C (−105.7 °F; 196.7 K) |
Boiling point | 126.7 °C (260.1 °F; 399.8 K) |
Decomposes | |
Vapor pressure | 1.84 kPa (at 20 °C) |
Structure | |
Tetrahedral | |
Hazards | |
GHS pictograms | |
GHS signal word | DANGER |
H301, H314 | |
P280, P301+310, P305+351+338, P310 | |
EU classification (DSD)
|
T |
R-phrases | R14, R25, R34 |
S-phrases | S26, S27, S36/37/39, S45 |
NFPA 704 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose)
|
140 mg kg−1 (oral, rat) |
Related compounds | |
Related vanadiums
|
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Vanadium oxytrichloride is the inorganic compound with the formula VOCl3. This distillable liquid hydrolyzes readily in air and is a strong oxidant. It is used as a reagent in organic synthesis.
VOCl3 is a vanadium compound with vanadium in the +5 oxidation state and as such is diamagnetic. It is tetrahedral with O-V-Cl bond angles of 111° and Cl-V-Cl bond angles of 108°. The V-O and V-Cl bond lengths are 157 and 214 pm, respectively. VOCl3 is highly reactive toward water and evolves HCl upon standing. It is soluble in nonpolar solvents such as benzene, CH2Cl2, and hexane. In some aspects, the chemical properties of VOCl3 and POCl3 are similar. One distinction is that VOCl3 is a strong oxidizing agent, whereas the phosphorus compound is not.
VOCl3 is synthesized by the chlorination of V2O5. The reaction proceeds at c. 600 °C:
When the V2O5 is used as an intimate mixture with carbon, the synthesis proceeds at 200–400 °C; in this case the carbon serves as a deoxygenation agent akin to its use in the Kroll process for the manufacturing of TiCl4 from TiO2.
Vanadium(III) oxide can also be used as a precursor:
A more typical laboratory synthesis involves the chlorination of V2O5 using SOCl2.
Vanadium oxytrichloride quickly hydrolyzes resulting in vanadium pentoxide and hydrochloric acid. In the picture, orange V2O5 can be seen forming on the walls of the beaker. An intermediate in this process is VO2Cl: