*** Welcome to piglix ***

Tin(IV) chloride

Tin(IV) chloride
Tin (IV) chloride
Anhydrous Tin(IV) chloride
Tin(IV) chloride pentahydrate.jpg
Tin(IV) chloride pentahydrate
Tin(IV)-chlorid.svg
SnCl4 OH2 2.svg
Names
IUPAC names
Tetrachlorostannane
Tin tetrachloride
Tin(IV) chloride
Other names
Stannic chloride
Identifiers
7646-78-8 YesY
10026-06-9 (pentahydrate) N
3D model (Jmol) Interactive image
ChemSpider 22707 YesY
ECHA InfoCard 100.028.717
EC Number 231-588-9
PubChem 24287
RTECS number XP8750000
UN number 1827
Properties
SnCl4
Molar mass 260.50 g/mol (anhydrous)
350.60 g/mol (pentahydrate)
Appearance colorless to slightly yellow fuming liquid
Odor acrid
Density 2.226 g/cm3 (anhydrous)
2.04 g/cm3 (pentahydrate)
Melting point −34.07 °C (−29.33 °F; 239.08 K) (anhydrous)
56 °C (133 °F; 329 K) (pentahydrate)
Boiling point 114.15 °C (237.47 °F; 387.30 K)
decomposes (anhydrous)
very soluble (pentahydrate)
Solubility soluble in alcohol, benzene, toluene, chloroform, acetone, kerosene, CCl4, methanol, gasoline, CS2
Vapor pressure 2.4 kPa
−115·10−6 cm3/mol
1.512
Structure
monoclinic (P21/c)
Hazards
Safety data sheet ICSC 0953
Corrosive (C)
R-phrases R34, R52/53
S-phrases (S1/2), S7/8, S26, S45, S61
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Other anions
Tin(IV) fluoride
Tin(IV) bromide
Tin(IV) iodide
Other cations
Carbon tetrachloride
Silicon tetrachloride
Germanium tetrachloride
Tin(II) chloride
Lead(IV) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Tin(IV) chloride, also known as tin tetrachloride or stannic chloride is a inorganic compound with the formula SnCl4. At room temperature it is a colourless liquid, which fumes on contact with air, giving a stinging odor. It is used as precursor to other tin compounds. It was first discovered by Andreas Libavius (1550–1616) and was known as spiritus fumans libavii.

It is prepared from reaction of chlorine gas with elemental tin at 115 °C (239 °F).

Anhydrous tin(IV) chloride solidifies at −33 °C to give monoclinic crystals with the P21/c space group; making it isostructural to solidified SnBr4. Within this the molecules adopt near perfect tetrahedral symmetry with average Sn–Cl distances of 227.9(3) pm.

Several forms of hydrated tin tetrachloride are known. They all consist of [SnCl4(H2O)2] molecules together with varying amouts of water of crystallization. The additional water molecules link together the molecules of [SnCl4(H2O)2] through hydrogen bonds. Although the pentahydrate is most common of the hydrates, lower hydrates have also been characterised.

Anhydrous tin(IV) chloride is a Lewis acid. It forms adducts with ammonia, organophosphines, and other Lewis bases. When mixed with a small amount of water a semi-solid crystalline mass of the pentahydrate, SnCl4·5H2O is formed. This solid was formerly known as butter of tin. With hydrochloric acid the complex [SnCl6]2− is formed making the so-called hexachlorostannic acid.

Anhydrous tin(IV) chloride is a major precursor in organotin chemistry. Upon treatment with Grignard reagents, tin(IV) chloride gives tetraalkyltin compounds:


...
Wikipedia

...