synaptojanin 1 | |
---|---|
Identifiers | |
Symbol | SYNJ1 |
Entrez | 8867 |
HUGO | 11503 |
OMIM | 604297 |
RefSeq | NM_003895 |
UniProt | O43426 |
Other data | |
Locus | Chr. 21 q22.2 |
synaptojanin 2 | |
---|---|
Identifiers | |
Symbol | SYNJ2 |
Entrez | 8871 |
HUGO | 11504 |
OMIM | 609410 |
RefSeq | NM_003898 |
UniProt | O15056 |
Other data | |
Locus | Chr. 6 q25.3 |
Synaptojanin is a protein involved in vesicle uncoating in neurons. This is an important regulatory lipid phosphatase. It dephosphorylates the D-5 position phosphate from phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and Phosphatidylinositol (4,5)-bisphosphate(PIP2). It belongs to family of 5-phosphatases, which are structurally unrelated to D-3 inositol phosphatases like PTEN. Other members of the family of 5'phosphoinositide phosphatases include OCRL, SHIP1, SHIP2, INPP5J, INPP5E, INPP5B, INPP5A and SKIP.
The synaptojanin family comprises proteins that are key players in the synaptic vesicle recovery at the synapse. In general, vesicles containing neurotransmitters fuse with the presynaptic cell in order to release neurotransmitter into the synaptic cleft. It is the release of neurotransmitters that allows neuron to neuron communication in the nervous system. The recovery of the vesicle is referred to as endocytosis and is important to reset the presynaptic cell with new neurotransmitter.
Synaptojanin 1 and Synaptojanin 2 are the two main proteins in the synaptojanin family. Synaptojanin 2 can be further subdivided into synaptojanin 2a and synaptojanin 2b.
The mechanism by which vesicles are recovered is thought to involve the synaptojanin attracting the protein clathrin, which coats the vesicle and initiates vesicle endocytosis.
Synaptojanins are composed to three domains. The first is a central inositol 5-phosphatase domain, which can act on both PIP2 and PIP3. The second is an N-terminal Sac1-like inositol phosphatase domain, which can hydrolyze to PI in vitro PIP, PIP2. The third is a C-terminal domain that is rich in the amino acid proline and interacts with several proteins also involved in vesicle endocytosis. Specifically, the c-terminal domain interacts with amphiphysin, endophilin, DAP160/intersectin, syndapin and Eps15. The function of endophilin appears to be a binding partner for synaptojanin such that it can interact with other proteins and is involved in the initiation of shallow clathrin coated pits. Dap160 is a molecular scaffolding protein and functions in actin recruitment. Dynamin is a GTPase involved in vesicle budding, specifically modulating the severance of the vesicle from the neuronal membrane. Dynamin appears to be playing a larger role in neurite formation because its vesicle pinching role and the possibility of it recycling plasma membrane and growth factor receptor proteins.