Stille reaction | |
---|---|
Named after | John Kenneth Stille |
Reaction type | Coupling reaction |
Identifiers | |
Organic Chemistry Portal | stille-coupling |
RSC ontology ID | RXNO:0000035 |
The Stille reaction, or the Migita–Kosugi–Stille coupling, is a chemical reaction widely used in organic synthesis which involves the coupling of an organotin compound (also known as organostannanes) with a variety of organic electrophiles via palladium-catalyzed coupling reaction.
The R1 group attached to the trialkyltin is normally sp2-hybridized, including alkenes, and aryl groups; however, conditions have been devised to incorporate both sp3-hybridized groups, such as allylic and benzylic substituents, and sp-hybridized alkynes. These organostannanes are also stable to both air and moisture, and many of these reagents either are commercially available or can be synthesized from literature precedent. However, these tin reagents tend to be highly toxic. X is typically a halide, such as Cl, Br, or I, yet pseudohalides such as triflates and sulfonates and phosphates can also be used.
The groundwork for the Stille reaction was laid in 1976 and 1977 by Colin Eaborn, Toshihiko Migita, and Masanori Kosugi, who explored numerous palladium catalyzed couplings involving organotin reagents. John Stille and David Milstein developed a much milder and more broadly applicable procedure in 1978. Stille's work on this area might have earned him a share of the 2010 Nobel Prize, which was awarded to Richard Heck, Ei-ichi Negishi, and Akira Suzuki for their work on the Heck, Negishi, and Suzuki coupling reactions. However, Stille died in the plane crash of United Airlines Flight 232 in 1989.