An allyl group is a substituent with the structural formula H2C=CH-CH2R, where R is the rest of the molecule. It consists of a methylene bridge (-CH2-) attached to a vinyl group (-CH=CH2). The name is derived from the Latin word for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". The term allyl applies to many compounds related to H2C=CH-CH2, some of which are of practical or of everyday importance for example allyl chloride.
A site on the saturated carbon atom is called the allylic position or allylic site. A group attached at this site is sometimes described as allylic. Thus, CH2=CHCH2OH "has an allylic hydroxyl group." Allylic C-H bonds are about 15% weaker than the C-H bonds in ordinary sp3 carbon centers and are thus more reactive. This heightened reactivity has many practical consequences. The industrial production of acrylonitrile by ammoxidation of propene exploits the easy oxidation of the allylic C-H centers.
Unsaturated fats spoil by rancidification involving attack at allylic C-H centers.
Benzylic and allylic are related in terms of structure, bond strength, and reactivity. Other reactions that tend to occur with allylic compounds are allylic oxidations, ene reactions, and the Tsuji–Trost reaction. Benzylic groups are related to allyl groups; both show enhanced reactivity.