In quantum gravity, the problem of time is a conceptual conflict between general relativity and quantum mechanics. Roughly speaking, the problem of time is that there is none in general relativity. This is because in general relativity, the Hamiltonian is an energy constraint that must vanish to allow for general covariance. However, in theories of quantum mechanics, the Hamiltonian generates the time evolution of quantum states. Therefore, we arrive at the conclusion that "nothing moves" ("there is no time") in general relativity. Since "there is no time", the usual interpretation of quantum mechanics measurements at given moments of time breaks down. This problem of time is the broad banner for all interpretational problems of the formalism.
In classical mechanics, a special status is assigned to time in the sense that it is treated as a classical background parameter, external to the system itself. This special role is seen in the standard formulation of quantum mechanics. It is regarded as part of an a priori given classical background with a well defined value. In fact, the classical treatment of time is deeply intertwined with the Copenhagen interpretation of quantum mechanics, and, thus, with the conceptual foundations of quantum theory: all measurements of observables are made at certain instants of time and probabilities are only assigned to such measurements.
Special relativity has modified the notion of time. But from a fixed Lorentz observer's viewpoint time remains a distinguished, absolute, external, global parameter. The Newtonian notion of time essentially carries over to special relativistic systems, hidden in the spacetime structure.
Though classically spacetime appears to be an absolute background, general relativity reveals that spacetime is actually dynamical; gravity is a manifestation of spacetime geometry. Matter reacts with spacetime: