*** Welcome to piglix ***

Quantum gravity


Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored.

The current understanding of gravity is based on Albert Einstein's general theory of relativity, which is formulated within the framework of classical physics. On the other hand, the nongravitational forces are described within the framework of quantum mechanics, a radically different formalism for describing physical phenomena based on the wave-like nature of matter. The necessity of a quantum mechanical description of gravity is sometimes said to follow from the (alleged) fact that one cannot consistently couple a classical system to a quantum one. This is false as is shown, for example, by Wald's explicit construction of a consistent semiclassical theory.

While a quantum theory of gravity may be needed in order to reconcile general relativity with the principles of quantum mechanics, difficulties arise when one attempts to apply the usual prescriptions of quantum field theory to the force of gravity via graviton bosons. The problem is that the theory one gets in this way is not renormalizable and therefore cannot be used to make meaningful physical predictions. As a result, theorists have taken up more radical approaches to the problem of quantum gravity, the most popular approaches being string theory and loop quantum gravity. A recent development is the theory of causal fermion systems which gives quantum mechanics, general relativity, and quantum field theory as limiting cases.

Strictly speaking, the aim of quantum gravity is only to describe the quantum behavior of the gravitational field and should not be confused with the objective of unifying all fundamental interactions into a single mathematical framework. While any substantial improvement into the present understanding of gravity would aid further work towards unification, study of quantum gravity is a field in its own right with various branches having different approaches to unification. Although some quantum gravity theories, such as string theory, try to unify gravity with the other fundamental forces, others, such as loop quantum gravity, make no such attempt; instead, they make an effort to quantize the gravitational field while it is kept separate from the other forces. A theory of quantum gravity that is also a grand unification of all known interactions is sometimes referred to as The Theory of Everything (TOE).


...
Wikipedia

...