*** Welcome to piglix ***

Pericyte

Pericyte
Microvessel.jpg
Transmission electron micrograph of a microvessel, showing pericytes characteristically lining the outer surface of endothelial cells, which encircle an erythrocyte (E).
Details
Identifiers
Latin pericytus
Code TH H3.09.02.0.02006
Anatomical terminology
[]

Pericytes are contractile cells that wrap around the endothelial cells that line the capillaries and venules throughout the body. Also known as Rouget cells or mural cells, pericytes are embedded in basement membrane where they communicate with endothelial cells of the body's smallest blood vessels by means of both direct physical contact and paracrine signaling. In the brain, pericytes help sustain the blood–brain barrier as well as several other homeostatic and hemostatic functions of the brain. These cells are also a key component of the neurovascular unit, which includes endothelial cells, astrocytes, and neurons. Pericytes regulate capillary blood flow, the clearance and phagocytosis of cellular debris, and the permeability of the blood–brain barrier. Pericytes stabilize and monitor the maturation of endothelial cells by means of direct communication between the cell membrane as well as through paracrine signaling. A deficiency of pericytes in the central nervous system can cause the blood–brain barrier to break down.

In the central nervous system, pericytes wrap around the endothelial cells that line the inside of the capillary. These two types of cells can be easily distinguished from one another based on the presence of the prominent round nucleus of the pericyte compared to the flat elongated nucleus of the endothelial cells. Pericytes also project finger-like extensions that wrap around the capillary wall, allowing the cells to regulate capillary blood flow.

Both pericytes and endothelial cells share a basement membrane where a variety of intercellular connections are made. Many types of integrin molecules facilitate communication between pericytes and endothelial cells separated by the basement membrane. Pericytes can also form direct connections with neighboring cells by forming peg and socket arrangements in which parts of the cells interlock, similar to the gears of a clock. At these interlocking sites, gap junctions can be formed which allow the pericytes and neighboring cells to exchange ions and other small molecules. Important molecules in these intercellular connections include N-cadherin, fibronectin, connexin and various integrins.


...
Wikipedia

...