*** Welcome to piglix ***

Methyl tert-butyl ether

Methyl tert-butyl ether
Skeletal formula of MTBE
Ball-and-stick model of the MTBE molecule
Names
IUPAC name
2-Methoxy-2-methylpropane
Other names
Methyl tertiary-butyl ether; Methyl tert-butyl ether; Methyl t-butyl ether; MTBE; tert-Butyl methyl ether; tBME; tert-BuOMe
Identifiers
1634-04-4 YesY
3D model (Jmol) Interactive image
ChEBI CHEBI:27642 YesY
ChemSpider 14672 YesY
ECHA InfoCard 100.015.140
KEGG C11344 YesY
PubChem 15413
Properties
C5H12O
Molar mass 88.15 g·mol−1
Density 0.7404 g/cm³
Melting point −109 °C (−164 °F; 164 K)
Boiling point 55.2 °C (131.4 °F; 328.3 K)
42 g/L (20 °C)
Viscosity 0.36 cP at 25 °C
Hazards
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline) Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity (yellow): no hazard code Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point −10 °C (14 °F; 263 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Methyl tert-butyl ether (also known as MTBE and tert-butyl methyl ether) is an organic compound with a structural formula (CH3)3COCH3. MTBE is a volatile, flammable, and colorless liquid that is sparingly soluble in water. It has a minty odor vaguely reminiscent of diethyl ether, leading to unpleasant taste and odor in water. MTBE is a gasoline additive, used as an oxygenate to raise the octane number. Its use is controversial because of its contamination of groundwater and legislation favoring ethanol. However, worldwide production of MTBE has been constant owing to growth in Asian markets.

MTBE is manufactured via the chemical reaction of methanol and isobutylene. Methanol is derived from natural gas, and isobutylene is derived from butane obtained from crude oil or natural gas, thus MTBE is derived from fossil fuels. In the United States, it is produced in very large quantities (more than 200,000 barrels (32,000 m3) per day in 1999) during its use as a fuel additive.

MTBE is used as a fuel component in fuel for gasoline engines. It is one of a group of chemicals commonly known as oxygenates because they raise the oxygen content of gasoline.

In the US it has been used in gasoline at low levels since 1979 to replace tetraethyl lead and to increase its octane rating helping prevent engine knocking. Oxygenates help gasoline burn more completely, reducing tailpipe emissions from pre-1984 motor vehicles; dilutes or displaces gasoline components such as aromatics (e.g., benzene) and sulfur; and optimizes the oxidation during combustion. Before the incoming of other oxygenates and octane enhancing components most refiners had chosen MTBE primarily for its blending characteristics and low cost.


...
Wikipedia

...