In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication.
A linear group is an abstract group that is isomorphic to a matrix group over a field K, in other words, admitting a faithful, finite-dimensional representation over K.
Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class. Examples of groups that are not linear include groups which are "too big" (for example, the group of permutations of an infinite set), or which exhibit some pathological behaviour (for example finitely generated infinite torsion groups).
A group G is said to be linear if there exists a field K, an integer d and an injective morphism from G to the general linear group GLn(K) (a faithful linear representation of dimension d over K): if needed one can mention the field and dimension by saying that G is linear of degree d over K. Basic instances are groups which are defined as subgroups of a linear group, for example:
The so-called classical groups generalise the examples 1 and 2 above. They arise as linear algebraic groups, that is, as subgroups of GLn defined by a finite number of equations. Basic examples are orthogonal, unitary and symplectic groups but it is possible to construct more using division algebras (for example the unit group of a quaternion algebra is a classical group). Note that the projective groups associated to these groups are also linear, though less obviously. For example, the group PSL2(R) is not a group of 2×2 matrices, but it has a faithful representation as 3×3 matrices (the adjoint representation, which can be used in the general case.