*** Welcome to piglix ***

Division algebra


In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division is possible.

Formally, we start with an algebra D over a field, and assume that D does not just consist of its zero element. We call D a division algebra if for any element a in D and any non-zero element b in D there exists precisely one element x in D with a = bx and precisely one element y in D such that a = yb.

For associative algebras, the definition can be simplified as follows: an associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1≠0 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).

The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite-dimensional as a vector space over the reals). The Frobenius theorem states that up to isomorphism there are three such algebras: the reals themselves (dimension 1), the field of complex numbers (dimension 2), and the quaternions (dimension 4).

Wedderburn's little theorem states that if D is a finite division algebra, then D is a finite field.


...
Wikipedia

...