In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.
Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures.
Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called variety of groups.
As in other parts of mathematics, concrete problems and examples have played important roles in the development of abstract algebra. Through the end of the nineteenth century, many – perhaps most – of these problems were in some way related to the theory of algebraic equations. Major themes include:
Numerous textbooks in abstract algebra start with axiomatic definitions of various algebraic structures and then proceed to establish their properties. This creates a false impression that in algebra axioms had come first and then served as a motivation and as a basis of further study. The true order of historical development was almost exactly the opposite. For example, the hypercomplex numbers of the nineteenth century had kinematic and physical motivations but challenged comprehension. Most theories that are now recognized as parts of algebra started as collections of disparate facts from various branches of mathematics, acquired a common theme that served as a core around which various results were grouped, and finally became unified on a basis of a common set of concepts. An archetypical example of this progressive synthesis can be seen in the history of group theory.