*** Welcome to piglix ***

Algebra over a field


In mathematics, an algebra over a field (often simply called an algebra), is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure, which consists of a set, together with operations of multiplication, addition, and scalar multiplication by elements of the underlying field, and satisfies the axioms implied by "vector space" and "bilinear".

The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and nonassociative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead.

An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space.


...
Wikipedia

...