The macrolides are a class of natural products that consist of a large macrocyclic lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. The lactone rings are usually 14-, 15-, or 16-membered. Macrolides belong to the polyketide class of natural products. Some macrolides have antibiotic or antifungal activity and are used as pharmaceutical drugs.
US FDA-approved :
Non-US FDA-approved:
Ketolides are a class of antibiotics that are structurally related to the macrolides. They are used to treat respiratory tract infections caused by macrolide-resistant bacteria. Ketolides are especially effective, as they have two ribosomal binding sites.
Ketolides include:
Fluoroketolides are a class of antibiotics that are structurally related to the ketolides. The fluoroketolides have three ribosomal interaction sites.
Fluoroketolides include:
The drugs tacrolimus, pimecrolimus, and sirolimus, which are used as immunosuppressants or immunomodulators, are also macrolides. They have similar activity to ciclosporin.
Polyene antimycotics, such as amphotericin B, nystatin etc., are a subgroup of macrolides.
A variety of toxic macrolides produced by bacteria have been isolated and characterized, such as the mycolactones.
Antibiotic macrolides are used to treat infections caused by Gram-positive (e.g., ) and limited Gram-negative (e.g., Bordetella pertussis, Haemophilus influenzae) bacteria, and some respiratory tract and soft-tissue infections. The antimicrobial spectrum of macrolides is slightly wider than that of penicillin, and, therefore, macrolides are a common substitute for patients with a penicillin allergy. Beta-hemolytic , pneumococci, staphylococci, and enterococci are usually susceptible to macrolides. Unlike penicillin, macrolides have been shown to be effective against Legionella pneumophila, mycoplasma, mycobacteria, some rickettsia, and chlamydia.