*** Welcome to piglix ***

Lewis acidity


Lewis acid is a chemical species that reacts with a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that donates a pair of electrons to a Lewis acid to form a Lewis adduct. For example, OH and NH3 are Lewis bases, because they can donate a lone pair of electrons. In the adduct, the Lewis acid and base share an electron pair furnished by the Lewis base. Usually the terms Lewis acid and Lewis base are defined within the context of a specific chemical reaction. For example, in the reaction of Me3B and NH3 to give Me3BNH3, Me3B acts as a Lewis acid, and NH3 acts as a Lewis base. Me3BNH3 is the Lewis adduct. The terminology refers to the contributions of Gilbert N. Lewis.

In many cases, the interaction between the Lewis base and Lewis acid in a complex is indicated by an arrow indicating the Lewis base donating electrons toward the Lewis acid using the notation of a dative bond—for example, Me3B←NH3. Some sources indicate the Lewis base with a pair of dots (the explicit electrons being donated), which allows consistent representation of the transition from the base itself to the complex with the acid:

A center dot may also be used to represent a Lewis adduct, such as Me3B•NH3. Another example is boron trifluoride etherate, BF3•Et2O. The center dot is also used to represent hydrate coordination in various crystals, as in MgSO4•7H2O for hydrated magnesium sulfate. In general, however, the donor–acceptor bond is viewed as simply somewhere along a continuum between idealized covalent bonding and ionic bonding.

Classically, the term "Lewis acid" is restricted to trigonal planar species with an empty p orbital, such as BR3 where R can be an organic substituent or a halide. For the purposes of discussion, even complex compounds such as Et3Al2Cl3 and AlCl3 are treated as trigonal planar Lewis acids. Metal ions such as Na+, Mg2+, and Ce3+, which are invariably complexed with additional ligands, are often sources of coordinatively unsaturated derivatives that form Lewis adducts upon reaction with a Lewis base. Other reactions might simply be referred to as "acid-catalyzed" reactions. Some compounds, such as H2O, are both Lewis acids and Lewis bases, because they can either accept a pair of electrons or donate a pair of electrons, depending upon the reaction.


...
Wikipedia

...