*** Welcome to piglix ***

Lead telluride

Lead telluride
Names
Other names
Lead(II) telluride
Altaite
Identifiers
ECHA InfoCard 100.013.862
PubChem CID
Properties
PbTe
Molar mass 334.80 g/mol
Appearance gray cubic crystals.
Density 8.164 g/cm3
Melting point 924 °C (1,695 °F; 1,197 K)
insoluble
Band gap 0.25 eV (0 K)
0.32 eV (300 K)
Electron mobility 1600 cm2 V−1 s−1 (0 K)
6000 cm2 V−1 s−1 (300 K)
Structure
Halite (cubic), cF8
Fm3m, No. 225
a = 6.46 Angstroms
Octahedral (Pb2+)
Octahedral (Te2−)
Thermochemistry
50.5 J·mol−1·K−1
-70.7 kJ·mol−1
110.0 J·mol−1·K−1
Hazards
Safety data sheet External MSDS
Repr. Cat. 1/3
Harmful (Xn)
Dangerous for the environment (N)
R-phrases R61, R20/22, R33, R62, R50/53
S-phrases S53, S45, S60, S61
Flash point Non-flammable
Related compounds
Other anions
Lead(II) oxide
Lead(II) sulfide
Lead selenide
Other cations
Carbon monotelluride
Silicon monotelluride
Germanium telluride
Tin telluride
Related compounds
Thallium telluride
Bismuth telluride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Lead telluride is a compound of lead and tellurium (PbTe). It crystallizes in the NaCl crystal structure with Pb atoms occupying the cation and Te forming the anionic lattice. It is a narrow gap semiconductor with a band gap of 0.32 eV. It occurs naturally as the mineral altaite.

PbTe has proven to be a very important intermediate thermoelectric material. The performance of thermoelectric materials can be evaluated by the figure of merit, , in which is the Seebeck coefficient, is the electrical conductivity and is the thermal conductivity. In order to improve the thermoelectric performance of materials, the power factor () needs to be maximized and the thermal conductivity needs to be minimized.


...
Wikipedia

...