*** Welcome to piglix ***

Bismuth telluride

Bismuth telluride
Монокристалл теллурида висмута.jpg
Bi2Te3 structure.png
Identifiers
1304-82-1 YesY
3D model (Jmol) Interactive image
ChemSpider 11278988 YesY
ECHA InfoCard 100.013.760
EC Number 215-135-2
PubChem 6379155
Properties
Bi2Te3
Molar mass 800.761 g/mol
Appearance grey powder
Density 7.85 g/cm3
Melting point 586 °C (1,087 °F; 859 K)
insoluble
Solubility insoluble
Structure
Trigonal, hR15, SpaceGroup = R-3m, No. 166
Hazards
Safety data sheet Sigma-Aldrich
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point noncombustible
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 15 mg/m3 (total) TWA 5 mg/m3 (resp) (pure)
none (doped with selenium sulfide)
REL (Recommended)
TWA 10 mg/m3 (total) TWA 5 mg/m3 (resp) (pure) TWA 5 mg/m3 (doped with selenium sulfide)
IDLH (Immediate danger)
N.D. (pure and doped)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Bismuth telluride (Bi2Te3) is a gray powder that is a compound of bismuth and tellurium also known as bismuth(III) telluride. It is a semiconductor which, when alloyed with antimony or selenium is an efficient thermoelectric material for refrigeration or portable power generation. Bi2Te3 is also known to be a topological insulator, and thus exhibits many thickness-dependent physical properties.

Bismuth telluride is a narrow gap layered semiconductor with a trigonal unit cell. The valence and conduction band structure can be described as a many-ellipsoidal model with 6 constant-energy ellipsoids that are centered on the reflection planes. Bi2Te3 cleaves easily along the trigonal axis due to Van der Waals bonding between neighboring tellurium atoms. Due to this, bismuth telluride based materials used for power generation or cooling applications must be polycrystalline. Furthermore, the Seebeck coefficient of bulk Bi2Te3 becomes compensated around room temperature, forcing the materials used in power generation devices to be an alloy of bismuth, antimony, tellurium, and selenium.

Recently, researchers have attempted to improve the efficiency of Bi2Te3 based materials by creating structures where one or more dimensions are reduced, such as nanowires or thin films. In one such instance n-type bismuth telluride was shown to have an improved Seebeck coefficient (voltage per unit temperature difference) of −287 μV/K at 54 Celsius, However, one must realize that Seebeck Coefficient and electrical conductivity have a tradeoff; a higher Seebeck coefficient results in decreased carrier concentration and decreased electrical conductivity.

In another case, researchers report that bismuth telluride has high electrical conductivity of 1.1×105 S·m/m2 with its very low lattice thermal conductivity of 1.20 W/(m·K), similar to ordinary glass.


...
Wikipedia

...