The kraft process (also known as kraft pulping or sulfate process) is a process for conversion of wood into wood pulp, which consists of almost pure cellulose fibers, the main component of paper. The kraft process entails treatment of wood chips with a hot mixture of water, sodium hydroxide, and sodium sulfide, known as white liquor, that breaks the bonds that link lignin, hemicellulose, and cellulose. The technology entails several steps, both mechanical and chemical. It is the dominant method for producing paper. In some situations, the process has been controversial because kraft plants can release smelly products and in some situations produce substantial liquid wastes.
The kraft process (so called because of the superior strength of the resulting paper, from the German word for 'strength') was invented by Carl F. Dahl in 1879 in Danzig, Prussia, Germany. U.S. Patent 296,935 was issued in 1884, and a pulp mill using this technology started (in Sweden) in 1890. The invention of the recovery boiler by G. H. Tomlinson in the early 1930s was a milestone in the advancement of the kraft process. It enabled the recovery and reuse of the inorganic pulping chemicals such that a kraft mill is a nearly closed-cycle process with respect to inorganic chemicals, apart from those used in the bleaching process. For this reason, in the 1940s, the kraft process superseded the sulfite process as the dominant method for producing wood pulp.
Common wood chips used in pulp production are 12–25 millimetres (0.47–0.98 in) long and 2–10 millimetres (0.079–0.394 in) thick. The chips normally first enter the presteaming where they are wetted and preheated with steam. Cavities inside fresh wood chips are partly filled with liquid and partly with air. The steam treatment causes the air to expand and about 25% of the air to be expelled from the chips. The next step is to saturate the chips with black and white liquor. Air remaining in chips at the beginning of liquor impregnation is trapped within the chips. The impregnation can be done before or after the chips enters the digester and is normally done below 100 °C (212 °F). The cooking liquors consist of a mixture of white liquor, water in chips, condensed steam and weak black liquor. In the impregnation, cooking liquor penetrates into the capillary structure of the chips and low temperature chemical reactions with the wood begin. A good impregnation is important to get a homogeneous cook and low rejects. About 40–60% of all alkali consumption in the continuous process occurs in the impregnation zone.