James Waddell Alexander II | |
---|---|
Born |
Sea Bright, New Jersey |
September 19, 1888
Died | September 23, 1971 Princeton, New Jersey |
(aged 83)
Fields | Topology |
Doctoral advisor | Oswald Veblen |
Known for | Algebraic topology |
Notable awards | Bôcher Memorial Prize (1928) |
James Waddell Alexander II (September 19, 1888 – September 23, 1971) was a mathematician and topologist of the pre-World War II era and part of an influential Princeton topology elite, which included Oswald Veblen, Solomon Lefschetz, and others. He was one of the first members of the Institute for Advanced Study (1933–1951), and also a professor at Princeton University (1920–1951).
James was born on September 19, 1888, in Sea Bright, New Jersey. Alexander came from an old, distinguished Princeton family. He was the only child of the American portrait painter John White Alexander and Elizabeth Alexander. His maternal grandfather, James Waddell Alexander, was the president of the Equitable Life Assurance Society. Alexander's affluence and upbringing allowed him to interact with high society in America and elsewhere.
He married Natalia Levitzkaja on Jan. 11, 1918, a Russian woman. Together, they had two children.
They would frequently spend time, until 1937, in the Chamonix area of France, where he would also climb mountains and hills. Alexander was also a noted mountaineer, having succeeded in many major ascents, e.g. in the Swiss Alps and Colorado Rockies. When in Princeton, he liked to climb the university buildings, and always left his office window on the top floor of Fine Hall open so that he could enter by climbing the building.
He graduated from Princeton University with a Bachelor of Science degree in 1910. He received his Masters of Arts degree in 1911 and his doctoral degree in 1915.
During World War I, Alexander served with tech staff in the Ordnance Department of the United States Army overseas. He retired as a Captain.
He was a pioneer in algebraic topology, setting the foundations for Henri Poincaré's ideas on homology theory and furthering it by founding cohomology theory, which developed gradually in the decade after he gave a definition of cochain. For this, in 1928 he was awarded the Bôcher Memorial Prize. He also contributed to the beginnings of knot theory by inventing the Alexander invariant of a knot, which in modern terms is a graded module obtained from the homology of a "cyclic covering" of the knot complement. From this invariant, he defined the first of the polynomial knot invariants.