In mathematics, hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature.
When embedded to a Euclidean space (of a higher dimension), every point of a hyperbolic space is a saddle point. Another distinctive property is the amount of space covered by the n-ball in hyperbolic n-space: it increases exponentially with respect to the radius of the ball for large radii, rather than polynomially.
Hyperbolic n-space, denoted Hn, is the maximally symmetric, simply connected, n-dimensional Riemannian manifold with a constant negative sectional curvature. Hyperbolic space is a space exhibiting hyperbolic geometry. It is the negative-curvature analogue of the n-sphere. Although hyperbolic space Hn is diffeomorphic to Rn, its negative-curvature metric gives it very different geometric properties.
Hyperbolic 2-space, H2, is also called the hyperbolic plane.