Elliptic geometry, a special case of Riemannian geometry, is a non-Euclidean geometry, in which, given a line L and a point p outside L, there exists no line parallel to L passing through p, as all lines in elliptic geometry intersect. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°.
In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, the perpendiculars on one side all intersect at the absolute pole of the given line. The perpendiculars on the other side also intersect at a point, which is different from the other absolute pole only in spherical geometry, for in elliptic geometry the poles on either side are the same. There are no antipodal points in elliptic geometry. Every point corresponds to an absolute polar line of which it is the absolute pole. Any point on this polar line forms an absolute conjugate pair with the pole. Such a pair of points is orthogonal, and the distance between them is a quadrant.
The distance between a pair of points is proportional to the angle between their absolute polars.
As explained by H. S. M. Coxeter
A simple way to picture elliptic geometry is to look at a globe. Neighboring lines of longitude appear to be parallel at the equator, yet they intersect at the poles.
More precisely, the surface of a sphere is a model of elliptic geometry if lines are modeled by great circles, and points at each other's antipodes are considered to be the same point. With this identification of antipodal points, the model satisfies Euclid's first postulate, which states that two points uniquely determine a line. If the antipodal points were considered to be distinct, as in spherical geometry, then uniqueness would be violated, e.g., the lines of longitude on the Earth's surface all pass through both the north pole and the south pole.