*** Welcome to piglix ***

Sectional curvature


In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional plane σp in the tangent space at a point p of the manifold. It is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp (in other words, the image of σp under the exponential map at p). The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold.

The sectional curvature determines the curvature tensor completely.

Given a Riemannian manifold and two linearly independent tangent vectors at the same point, u and v, we can define

Here R is the Riemann curvature tensor.

In particular, if u and v are orthonormal, then

The sectional curvature in fact depends only on the 2-plane σp in the tangent space at p spanned by u and v. It is called the sectional curvature of the 2-plane σp, and is denoted Kp).

Riemannian manifolds with constant sectional curvature are the simplest. These are called space forms. By rescaling the metric there are three possible cases


...
Wikipedia

...