In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two-dimensional plane σp in the tangent space at a point p of the manifold. It is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp (in other words, the image of σp under the exponential map at p). The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold.
The sectional curvature determines the curvature tensor completely.
Given a Riemannian manifold and two linearly independent tangent vectors at the same point, u and v, we can define
Here R is the Riemann curvature tensor.
In particular, if u and v are orthonormal, then
The sectional curvature in fact depends only on the 2-plane σp in the tangent space at p spanned by u and v. It is called the sectional curvature of the 2-plane σp, and is denoted K(σp).
Riemannian manifolds with constant sectional curvature are the simplest. These are called space forms. By rescaling the metric there are three possible cases