*** Welcome to piglix ***

Space form


In mathematics, a space form is a complete Riemannian manifold M of constant sectional curvature K. The three obvious examples are Euclidean n-space, the n-dimensional sphere, and hyperbolic space, although a space form need not be simply connected.

The Killing–Hopf theorem of Riemannian geometry states that the universal cover of an n-dimensional space form with curvature is isometric to , hyperbolic space, with curvature is isometric to , Euclidean n-space, and with curvature is isometric to , the n-dimensional sphere of points distance 1 from the origin in .


...
Wikipedia

...