*** Welcome to piglix ***

Hyperbolic plane


In mathematics, hyperbolic geometry (also called BolyaiLobachevskian geometry or Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

Hyperbolic plane geometry is also the geometry of saddle surface or pseudospherical surfaces, surfaces with a constant negative Gaussian curvature.

A modern use of hyperbolic geometry is in the theory of special relativity, particularly Minkowski spacetime and gyrovector space.

When geometers first realised they were working with something other than the standard Euclidean geometry they described their geometry under many different names; Felix Klein finally gave the subject the name hyperbolic geometry to include it in the now rarely used sequence elliptic geometry (spherical geometry), parabolic geometry (Euclidean geometry), and hyperbolic geometry. In Russia it is commonly called Lobachevskian geometry, named after one of its discoverers, the Russian geometer Nikolai Lobachevsky.

This page is mainly about the 2-dimensional (planar) hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry.

Hyperbolic geometry can be extended to three and more dimensions; see hyperbolic space for more on the three and higher dimensional cases.

Hyperbolic geometry is more closely related to Euclidean geometry than it seems: the only axiomatic difference is the parallel postulate. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry. There are two kinds of absolute geometry, Euclidean and hyperbolic. All theorems of absolute geometry, including the first 28 propositions of book one of Euclid's Elements, are valid in Euclidean and hyperbolic geometry. Propositions 27 and 28 of Book One of Euclid's Elements prove the existence of parallel/non-intersecting lines.


...
Wikipedia

...