*** Welcome to piglix ***

Hydrazoic Acid

Hydrazoic acid
Structure, bonding and dimensions of the hydrogen azide molecule
Hydrazoic acid
Hydrazoic acid
Names
IUPAC name
Hydrogen azide
Identifiers
3D model (Jmol)
ChEBI
ChemSpider
ECHA InfoCard 100.029.059
PubChem CID
Properties
HN3
Molar mass 43.03 g/mol
Appearance colorless, highly volatile liquid
Density 1.09 g/cm3
Melting point −80 °C (−112 °F; 193 K)
Boiling point 37 °C (99 °F; 310 K)
highly soluble
Solubility soluble in alkali, alcohol, ether
Acidity (pKa) 4.6
Structure
approximately linear
Hazards
Main hazards Highly toxic, explosive, reactive
R-phrases R3, R27/28
S-phrases S33, S36/37, S38
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas Reactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g., phosphorus Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Other cations
Sodium azide
Ammonia
Hydrazine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Hydrazoic acid, also known as hydrogen azide or azoimide, is a compound with the chemical formula HN3. It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. It was first isolated in 1890 by Theodor Curtius. The acid has few applications, but its conjugate base, the azide ion, is useful in specialized processes.

Hydrazoic acid is soluble in water. Undiluted hydrazoic acid is dangerously explosive with a standard enthalpy of formation ΔfHo (l, 298K) = +264 kJmol−1). When dilute, the gas and aqueous solutions (<10%) can be safely handled.

The acid is usually formed by acidification of an azide salt like sodium azide. Normally solutions of sodium azide in water contain trace quantities of hydrazoic acid in equilibrium with the azide salt, but introduction of a stronger acid can convert the primary species in solution to hydrazoic acid. The pure acid may be subsequently obtained by fractional distillation as an extremely explosive colorless liquid with an unpleasant smell.

Its aqueous solution can also be prepared by treatment of barium azide solution with dilute sulfuric acid, filtering the insoluble barium sulfate.

It was originally prepared by the reaction of aqueous hydrazine with nitrous acid.

Other oxidizing agents, such as hydrogen peroxide, NOCl, NCl3 or nitric acid, can also be used.

In its properties hydrazoic acid shows some analogy to the halogen acids, since it forms poorly soluble (in water) lead, silver and mercury(I) salts. The metallic salts all crystallize in the anhydrous form and decompose on heating, leaving a residue of the pure metal. It is a weak acid (pKa = 4.75.) Its heavy metal salts are explosive and readily interact with the alkyl iodides. Azides of heavier alkali metals (excluding lithium) or alkaline earth metals are not explosive, but decompose in a more controlled way upon heating, releasing spectroscopically-pure N
2
gas. Solutions of hydrazoic acid dissolve many metals (e.g. zinc, iron) with liberation of hydrogen and formation of salts, which are called azides (formerly also called azoimides or hydrazoates).


...
Wikipedia

...