*** Welcome to piglix ***

Alkyl iodide


Organoiodine compounds are organic compounds that contain one or more carboniodine bonds. They occur widely in organic chemistry, but are relatively rare in nature. The thyroxine hormones are organoiodine compounds that are required for health and the reason for government-mandated iodization of salt.

Almost all organoiodine compounds feature iodide connected to one carbon center. These are usually classified as derivatives of I. Some organoiodine compounds feature iodine in higher oxidation states.

The C–I bond is the weakest of the carbon–halogen bonds. These bond strengths correlate with the electronegativity of the halogen, decreasing in the order F > Cl > Br > I. This periodic order also follows the atomic radius of halogens and the length of the carbon-halogen bond. For example, in the molecules represented by CH3X, where X is a halide, the carbon-X bonds have strengths, or bond dissociation energies, of 115, 83.7, 72.1, and 57.6 kcal/mol for X = fluoride, chloride, bromide, and iodide, respectively. Of the halides, iodide usually is the best leaving group. Because of the weakness of the C-I bond, samples of organoiodine compounds are often yellow due to an impurity of I2.

A noteworthy aspect of organoiodine compounds is their high density, which arises from the high atomic weight of iodine. For example, one millilitre of methylene iodide weighs 3.325 g.

Few organoiodine compounds are important industrially, at least in terms of large scale production. Iodide-containing intermediates are common in organic synthesis, because of the easy formation and cleavage of the C–I bond. Industrially significant organoiodine compounds, often used as disinfectants or pesticides, are iodoform (CHI3), methylene iodide (CH2I2), and methyl iodide (CH3I). Although methyl iodide is not an industrially important product, it is an important intermediate, being a transiently generated intermediate in the industrial production of acetic acid and acetic anhydride. The potential for methyl iodide to replace the ubiquitous dependence on methyl bromide as a soil fumigant has been considered, however limited information is available on environmental behavior of the former. Ioxynil (3,5-diiodo-4-hydroxybenzonitrile), which inhibits photosynthesis at photosystem II, is among the very few organoiodine herbicides. A member of the hydroxybenzonitrile herbicide class, ioxynil is an iodinated analog of the brominated herbicide, bromoxynil (3,5-dibromo-4-hydroxybenzonitrile).


...
Wikipedia

...