*** Welcome to piglix ***

Honokiol

Honokiol
Honokiol.png
Names
IUPAC name
2-(4-hydroxy-3-prop-2-enyl-phenyl)- 4-prop-2-enyl-phenol
Other names
houpa, hnk
Identifiers
3D model (Jmol)
ChemSpider
ECHA InfoCard 100.122.079
KEGG
PubChem CID
Properties
C18H18O2
Molar mass 266.334 g/mol
Appearance White solid
sparingly (25 °C)
Related compounds
Related biphenols
diethylstilbestrol,
dihydroxyeugenol
Related compounds
magnolol.
4-O-Methylhonokiol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Honokiol is a lignan isolated from the bark, seed cones, and leaves of trees belonging to the genus Magnolia. It has been identified as one the chemical compounds in some traditional eastern herbal medicines along with magnolol, 4-O-methylhonokiol, and obovatol.

Honokiol has been extracted from a number of species of Magnolia native to many regions of the globe. Magnolia grandiflora, which is native to the American South, as well as Mexican species like Magnolia dealbata have been found to be sources of honokiol. Traditionally in Asian medicine, the Magnolia biondii, Magnolia obovata, and Magnolia officinalis are commonly used. The compound itself has a spicy odor.

Because of its physical properties, honokiol can readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier. As a result, honokiol is a potentially potent therapy with high bioavailability.

Honokiol belongs to a class of neolignan biphenols. As a polyphenol it is relatively small and can interact with cell membrane proteins through intermolecular interactions like hydrogen bonding, hydrophobic interactions, or aromatic pi orbital co-valency. It is hydrophobic and readily dissolved in lipids. It is structurally similar to propofol.

There are several methods for purifying and isolating honokiol. In nature, honokiol exists with its structural isomer magnolol, which differs from honokiol only by the position of one hydroxyl group. Because of the very similar properties of magnolol and honokiol, purification has often been limited to a HPLC or electromigration. However, methods developed in 2006 by workers in the lab of Jack L. Arbiser, took advantage of the proximity of the phenolic hydroxyl groups in magnolol, which form a protectable diol, to generate a magnolol acetonide (Figure 1), with a subsequent simple purification via flash chromatography over silica.


...
Wikipedia

...