glycophorin C (Gerbich blood group) | |
---|---|
Identifiers | |
Symbol | GYPC |
Alt. symbols | GPC, GYPD, Ge, CD236, CD236R |
Entrez | 2995 |
HUGO | 4704 |
OMIM | 110750 |
RefSeq | NM_002101 |
UniProt | P04921 |
Other data | |
Locus | Chr. 2 q14-q21 |
Glycophorin C (GYPC; CD236/CD236R; glycoprotein beta; glycoconnectin; PAS-2') plays a functionally important role in maintaining erythrocyte shape and regulating membrane material properties, possibly through its interaction with protein 4.1. Moreover, it has previously been shown that membranes deficient in protein 4.1 exhibit decreased content of glycophorin C. It is also an integral membrane protein of the erythrocyte and acts as the receptor for the Plasmodium falciparum protein PfEBP-2 (erythrocyte binding protein 2; baebl; EBA-140).
The antigen was discovered in 1960 when three women who lacked the antigen made anti-Gea in response to pregnancy. The antigen is named after one of the patients – a Mrs Gerbich. The following year a new but related antigen was discovered in a Mrs Yus for whom an antigen in this system is also named. In 1972 a numerical system for the antigens in this blood group was introduced.
Despite the similar names glycophorin C and D are unrelated to the other three glycophorins which encoded on chromosome 4 at location 4q28-q31. These latter proteins are closely related. Glycophorin A and glycophorin B carry the blood group MN and Ss antigens respectively. There are ~225,000 molecules of GPC and GPD per erythrocyte.
Originally it was thought that glycophorin C and D were the result of a gene duplication event but it was only later realised that they were encoded by the same gene. Glycophorin D (GPD) is generated from the glycophorin C messenger RNA by leaky translation at an in frame AUG at codon 30: glycophorin D = glycophorin C residues 30 to 128. This leaky translation appears to be a uniquely human trait.