*** Welcome to piglix ***

Ephrin

Ephrin
PDB 2hle EBI.jpg
structural and biophysical characterization of the ephb4-ephrinb2 protein protein interaction and receptor specificity.
Identifiers
Symbol Ephrin
Pfam PF00812
Pfam clan CL0026
InterPro IPR001799
PROSITE PDOC01003
SCOP 1kgy
SUPERFAMILY 1kgy
CDD cd02675

Ephrins (also known as ephrin ligands or Eph family receptor interacting proteins) are a family of proteins that serve as the ligands of the eph receptor. Eph receptors in turn compose the largest known subfamily of receptor protein-tyrosine kinases (RTKs).

Since ephrin ligands (ephrins) and Eph receptors (Ephs) are both membrane-bound proteins, binding and activation of Eph/ephrin intracellular signaling pathways can only occur via direct cell-cell interaction. Eph/ephrin signaling regulates a variety of biological processes during embryonic development including the guidance of axon growth cones, formation of tissue boundaries,cell migration, and segmentation. Additionally, Eph/ephrin signaling has recently been identified to play a critical role in the maintenance of several processes during adulthood including long-term potentiation,angiogenesis, and stem cell differentiation.

Ephrin ligands are divided into two subclasses of ephrin-A and ephrin-B based on their structure and linkage to the cell membrane. Ephrin-As are anchored to the membrane by a glycosylphosphatidylinositol (GPI) linkage and lack a cytoplasmic domain while ephrin-Bs are attached to the membrane by a single transmembrane domain that contains a short cytoplasmic PDZ-binding motif. The genes that encode the ephrin-A and ephrin-B proteins are designated as EFNA and EFNB respectively. Eph receptors in turn are classified as either EphAs or EphBs based on their binding affinity for either the ephrin-A or ephrin-B ligands.

Of the eight ephrins that have been identified in humans there are five known ephrin-A ligands (ephrin-A1-5) that interact with nine EphAs (EphA1-8 and EphA10) and three ephrin-B ligands (ephrin-B1-3) that interact with five EphBs (EphB1-4 and EphB6). Ephs of a particular subclass demonstrate an ability to bind with high affinity to all ephrins of the corresponding subclass, but in general have little to no cross-binding to ephrins of the opposing subclass. However, there are a few exceptions to this intrasubclass binding specificity as it has recently been shown that ephrin-B3 is able bind to and activate EPH receptor A4 and ephrin-A5 can bind to and activate Eph receptor B2. EphAs/ephrin-As typically bind with high affinity, which can partially be attributed to the fact that ephrinAs interact with EphAs by a "lock-and-key" mechanism that requires little conformational change of the EphAs upon ligand binding. In contrast EphBs typically bind with lower affinity than EphAs/ephring-As since they utilize an "induced fit" mechanism that requires a greater conformational change of EphBs to bind ephrin-Bs.


...
Wikipedia

...