*** Welcome to piglix ***

Axon guidance


Axon guidance (also called axon pathfinding) is a subfield of neural development concerning the process by which neurons send out axons to reach the correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is being researched.

Growing axons have a highly motile structure at the growing tip called the growth cone, which "sniffs out" the extracellular activities in the environment for signals that instruct the axon which direction to grow. These signals, called guidance cues, can be fixed in place or diffusible; they can attract or repel axons. Growth cones contain receptors that recognize these guidance cues and interpret the signal into a chemotropic response. The general theoretical framework is that when a growth cone "senses" a guidance cue, the receptors activate various signaling molecules in the growth cone that eventually affect the cytoskeleton. If the growth cone senses a gradient of guidance cue, the intracellular signaling in the growth cone happens asymmetrically, so that cytoskeletal changes happen asymmetrically and the growth cone turns toward or away from the guidance cue.

A combination of genetic and biochemical methods (see below) has led to the discovery of several important classes of axon guidance molecules and their receptors:

In addition, many other classes of extracellular molecules are used by growth cones to navigate properly:

Growing axons rely on a variety of guidance cues in deciding upon a growth pathway. The growth cones of extending axons process these cues in an intricate system of signal interpretation and integration, in order to ensure appropriate guidance. These cues can be functionally subdivided into:

Given the abundance of these different guidance cues it was previously believed that growth cones integrate various information by simply summing the gradient of cues, in different valences, at a given point in time, to making a decision on the direction of growth. However, studies in vertebrate nervous systems of ventral midline crossing axons, has shown that modulatory cues play a crucial part in tuning axon responses to other cues, suggesting that the process of axon guidance is nonlinear. For example, commissural axons are attracted by Netrin and repelled by Slit. However, as axons approach the midline, the repellent action of Slit is suppressed by Robo-3/Rig-1 receptor. Once the axons cross the midline, activation of Robo by Slit silences Netrin-mediated attraction, and the axons are repelled by Slit.


...
Wikipedia

...