Don't miss the piglix.com special BONUS offer during our Beta-test period. The next 100 new Registered Users (from a unique IP address), to post at least five (5) piglix, will receive 1,000 extra sign-up points (eventually exchangeable for crypto-currency)!

* * * * *    Free piglix.com Launch Promotions    * * * * *

  • Free Ads! if you are a small business with annual revenues of less than $1M - piglix.com will place your ads free of charge for up to one year! ... read more

  • $2,000 in free prizes! piglix.com is giving away ten (10) Meccano Erector sets, retail at $200 each, that build a motorized Ferris Wheel (or one of 22 other models) ... see details

Dyeing


Dyeing is the process of adding color to textile products like fibers, yarns, and fabrics. Dyeing is normally done in a special solution containing dyes and particular chemical material. After dyeing, dye molecules have uncut chemical bond with fiber molecules. The temperature and time controlling are two key factors in dyeing. There are mainly two classes of dye, natural and man-made.

The primary source of dye, historically, has generally been nature, with the dyes being extracted from animals or plants. Since the mid-19th century, however, humans have produced artificial dyes to achieve a broader range of colors and to render the dyes more stable to resist washing and general use. Different classes of dyes are used for different types of fiber and at different stages of the textile production process, from loose fibers through yarn and cloth to complete garments.

Acrylic fibers are dyed with basic dyes, while nylon and protein fibers such as wool and silk are dyed with acid dyes, and polyester yarn is dyed with disperse dyes. Cotton is dyed with a range of dye types, including vat dyes, and modern synthetic reactive and direct dyes.

The word dye is from Middle English deie and from Old English dag and dah. The first known use of the word dye was before the 12th century.

The earliest dyed flax fibers have been found in a prehistoric cave in the Republic of Georgia and date back to 34,000 BC. More evidence of textile dyeing dates back to the Neolithic period at the large Neolithic settlement at Çatalhöyük in southern Anatolia, where traces of red dyes, possibly from ocher, an iron oxide pigment derived from clay, were found. In China, dyeing with plants, barks, and insects has been traced back more than 5,000 years. Early evidence of dyeing comes from Sindh province in Pakistan, where a piece of cotton dyed with a vegetable dye was recovered from the archaeological site at Mohenjo-daro (3rd millennium BCE). The dye used in this case was madder, which, along with other dyes such as indigo, was introduced to other regions through trade. Natural insect dyes such as Cochineal and kermes and plant-based dyes such as woad, indigo and madder were important elements of the economies of Asia and Europe until the discovery of man-made synthetic dyes in the mid-19th century. The first synthetic dye was William Perkin's mauveine in 1856, derived from coal tar. Alizarin, the red dye present in madder, was the first natural pigment to be duplicated synthetically in 1869, a development which led to the collapse of the market for naturally grown madder. The development of new, strongly colored synthetic dyes followed quickly, and by the 1870s commercial dyeing with natural dyestuffs was disappearing.



  • the way in which different fibres absorbed the dye’s colour allowed for the creation of incredibly nuanced differences in colour tones and a harmony that is impossible to achieve any other way
  • the garment dyeing process naturally gave the fabric a “worn-in” hand allowing for the development of the casual and relaxed version of the classic menswear look which characterizes Italian sportswear
  • the fact that each fabric and fibre type responds differently to the dye also produces a “deconstructed” effect, whereby the consumer’s attention is drawn to the construction techniques of the jacket. For example: a more densely woven fabric absorbs the colour less intensely than a more open weave, the polyester stitching used for a cotton garment does not absorb any dye colour, producing a contrast colour stitch etc.
  • a relatively high failure rate for garments (between 5-10%)
  • the difficulty in achieving a very tailored look due to difficulties in precisely calculating shrinkage rates
  • high research and prototyping costs in order to understand how fabrics will behave in production
...
Wikipedia

1,000 EXTRA POINTS!

Don't forget! that as one of our early users, you are eligible to receive the 1,000 point bonus as soon as you have created five (5) acceptable piglix.

...